Overall Statistics |
Total Trades 369 Average Win 2.94% Average Loss -1.29% Compounding Annual Return 27.820% Drawdown 15.700% Expectancy 1.117 Net Profit 1163.319% Sharpe Ratio 1.371 Probabilistic Sharpe Ratio 83.059% Loss Rate 35% Win Rate 65% Profit-Loss Ratio 2.27 Alpha 0.168 Beta 0.268 Annual Standard Deviation 0.144 Annual Variance 0.021 Information Ratio 0.526 Tracking Error 0.171 Treynor Ratio 0.735 Total Fees $449.78 Estimated Strategy Capacity $860000.00 Lowest Capacity Asset SPDN WB6RS4QDXLK5 |
#region imports from AlgorithmImports import * #endregion # Import packages import numpy as np import pandas as pd import scipy as sc import pickle from scipy import stats class InOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2012, 1, 1) # Set Start Date self.cap = 10000 self.SetCash(self.cap) # Set Strategy Cash res = Resolution.Hour # Holdings ### 'Out' holdings and weights self.HLD_OUT = {self.AddEquity('TLT', res).Symbol: 1} ### 'In' holdings and weights self.HLD_IN = {self.AddEquity('QQQ', res).Symbol: 1} # Market and list of signals based on ETFs self.MRKT = self.AddEquity('QQQ', res).Symbol # market; QQQ self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.PRDC ## self.QQQ = self.AddData(QQQ, "QQQ", Resolution.Daily).Symbol self.VEU = self.AddData(VEU, "VEU", Resolution.Daily).Symbol self.TLT = self.AddData(TLT, "TLT", Resolution.Daily).Symbol self.SPDN = self.AddData(SPDN, "SPDN", Resolution.Daily).Symbol self.IEF = self.AddData(IEF, "IEF", Resolution.Daily).Symbol self.indicator = self.AddData(MOMENTUM, "MOMENTUM", Resolution.Daily).Symbol self.SetWarmUp(timedelta(126)) #self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX, self.DEBT, self.MRKT] self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU] self.pairlist = ['G_S', 'U_I'] self.basket_in = ['QQQ','VEU'] self.riskassetsmomentum = {} self.basket_out = ['TLT','IEF','SPDN'] self.safehavensmomentum = {} self.position = -1 for ticker in self.basket_in: self.AddEquity(ticker, res) self.Securities[ticker].SetFeeModel(CustomFeeModel()) self.riskassetsmomentum[ticker] = CombinedMomentum(self, ticker) for ticker in self.basket_out: self.AddEquity(ticker, res) self.Securities[ticker].SetFeeModel(CustomFeeModel()) self.safehavensmomentum[ticker] = CombinedMomentum(self, ticker) # Initialize constants and variables self.INI_WAIT_DAYS, self.lookback, self.be_in, self.dcount, self.outday, self.portf_val = [5, 252*5, [1], 0, 0, [self.cap]] # Symbols for charts self.SPY = self.AddEquity('SPY', res).Symbol self.QQQ = self.MRKT symbols = list(set(self.SIGNALS + [self.MRKT] + self.FORPAIRS + list(self.HLD_OUT.keys()) + list(self.HLD_IN.keys()) + [self.SPY] + [self.QQQ])) for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history self.history = self.History(symbols, self.lookback, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() self.update_history_shift() # Benchmarks for charts self.benchmarks = [self.history[self.SPY].iloc[-2], self.history[self.QQQ].iloc[-2]] def shiftAssets(self, target): if not (self.Portfolio[target].Invested): for symbol in self.Portfolio.Keys: self.Liquidate(symbol) if not self.Portfolio.Invested: self.SetHoldings(target, 1) def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-self.lookback:] self.update_history_shift() def update_history_shift(self): self.history_shift = self.history.rolling(11, center=True).mean().shift(60) def inout_check(self): if self.history.empty: return # Load saved dcount and outday (for live interruptions): if (self.dcount==0) and (self.outday==0) and (self.ObjectStore.ContainsKey('OS_counts')): OS_counts = self.ObjectStore.ReadBytes('OS_counts') OS_counts = pickle.loads(bytearray(OS_counts)) self.dcount, self.outday = [OS_counts['dcount'], OS_counts['outday']] # Returns sample to detect extreme observations returns_sample = (self.history / self.history_shift - 1) # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) # Extreme observations; statistical significance = 5% extreme_b = returns_sample.iloc[-1] < np.nanpercentile(returns_sample, 5, axis=0) # Re-assess/disambiguate double-edged signals abovemedian = returns_sample.iloc[-1] > np.nanmedian(returns_sample, axis=0) ### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal extreme_b.loc[self.DEBT] = np.where((extreme_b.loc[self.DEBT].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[self.DEBT]) # Determine whether 'in' or 'out' of the market if (extreme_b[self.SIGNALS + self.pairlist]).any(): self.be_in.append(0) self.outday = self.dcount if self.dcount >= self.outday + self.INI_WAIT_DAYS: self.be_in.append(1) current_portfolio = self.Portfolio.Keys # Swap to 'out' assets if applicable topriskassets = sorted(self.riskassetsmomentum.items(), key=lambda x: x[1].getValue(), reverse=True) topsafehavens = sorted(self.safehavensmomentum.items(), key=lambda x: x[1].getValue(), reverse=True) if not self.be_in[-1]: if self.position == -1 or self.position == 1: if not (self.Portfolio[topsafehavens[0][0]].Invested): self.Liquidate() self.SetHoldings(topsafehavens[0][0], 1) self.position = 0 elif self.be_in[-1]: if self.position == -1 or self.position == 0: if not (self.Portfolio[topriskassets[0][0]].Invested): self.Liquidate() self.SetHoldings(topriskassets[0][0], 1) self.position = 1 self.charts(extreme_b) self.dcount += 1 # Save data: day counts from live trading for interruptions (note: backtest saves data at the end so that it's available for live trading). if self.LiveMode: self.SaveData_Counts() def OnData(self, data): if self.IsWarmingUp: return if (self.Time.year <= 2021) : if data.ContainsKey(self.indicator): ticker = data[self.indicator].GetProperty('Indicator') if (ticker =="VEU"): self.Securities["VEU"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.VEU) self.be_in.append(1) elif (ticker =="QQQ"): self.Securities["QQQ"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.QQQ) self.be_in.append(1) elif (ticker =="TLT"): self.Securities["TLT"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.TLT) self.be_in.append(0) elif (ticker =="IEF"): self.Securities["IEF"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.IEF) self.be_in.append(0) elif (ticker =="SPDN"): self.Securities["SPDN"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.SPDN) self.be_in.append(0) if (self.Time.year == 2022 and self.Time.month <= 1): if data.ContainsKey(self.indicator): ticker = data[self.indicator].GetProperty('Indicator') if (ticker =="VEU"): self.Securities["VEU"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.VEU) self.be_in.append(1) elif (ticker =="QQQ"): self.Securities["QQQ"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.QQQ) self.be_in.append(1) elif (ticker =="TLT"): self.Securities["TLT"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.TLT) self.be_in.append(0) elif (ticker =="IEF"): self.Securities["IEF"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.IEF) self.be_in.append(0) elif (ticker =="SPDN"): self.Securities["SPDN"].SetFeeModel(CustomFeeModel()) self.shiftAssets(self.SPDN) self.be_in.append(0) elif (self.Time.hour == 15): self.inout_check() def charts(self, extreme_b): # Market comparisons spy_perf = self.history[self.SPY].iloc[-1] / self.benchmarks[0] * self.cap qqq_perf = self.history[self.QQQ].iloc[-1] / self.benchmarks[1] * self.cap #self.Plot('Strategy Equity', 'SPY', spy_perf) #self.Plot('Strategy Equity', 'QQQ', qqq_perf) # Signals self.Plot("In Out", "in_market", self.be_in[-1]) #self.Plot("Signals", "PRDC", int(extreme_b[self.SIGNALS + self.pairlist][0])) #self.Plot("Signals", "METL", int(extreme_b[self.SIGNALS + self.pairlist][1])) #self.Plot("Signals", "NRES", int(extreme_b[self.SIGNALS + self.pairlist][2])) #self.Plot("Signals", "USDX", int(extreme_b[self.SIGNALS + self.pairlist][3])) #self.Plot("Signals", "DEBT", int(extreme_b[self.SIGNALS + self.pairlist][4])) #self.Plot("Signals", "G_S", int(extreme_b[self.SIGNALS + self.pairlist][5])) #self.Plot("Signals", "U_I", int(extreme_b[self.SIGNALS + self.pairlist][6])) self.Plot("QQQ", "Held", self.Portfolio["QQQ"].Quantity) self.Plot("VEU", "Held", self.Portfolio["VEU"].Quantity) self.Plot("TLT", "Held", self.Portfolio["TLT"].Quantity) self.Plot("IEF", "Held", self.Portfolio["IEF"].Quantity) # Comparison of out returns self.portf_val.append(self.Portfolio.TotalPortfolioValue) if not self.be_in[-1] and len(self.be_in)>=2: period = np.where(np.array(self.be_in)[:-1] != np.array(self.be_in)[1:])[0][-1] - len(self.be_in) mrkt_ret = self.history[self.MRKT].iloc[-1] / self.history[self.MRKT].iloc[period] - 1 strat_ret = self.portf_val[-1] / self.portf_val[period] - 1 strat_vs_mrkt = round(float(strat_ret - mrkt_ret), 4) else: strat_vs_mrkt = 0 #self.Plot('Out return', 'PF vs MRKT', strat_vs_mrkt) def trade(self, weight_by_sec): # sort: execute largest sells first, largest buys last hold_wt = {k: (self.Portfolio[k].Quantity*self.Portfolio[k].Price)/self.Portfolio.TotalPortfolioValue for k in self.Portfolio.Keys} order_wt = {k: weight_by_sec[k] - hold_wt.get(k, 0) for k in weight_by_sec} weight_by_sec = {k: weight_by_sec[k] for k in dict(sorted(order_wt.items(), key=lambda item: item[1]))} for sec, weight in weight_by_sec.items(): # Check that we have data in the algorithm to process a trade if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None: continue # Only trade if holdings fundamentally change cond1 = (weight==0) and self.Portfolio[sec].IsLong cond2 = (weight>0) and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def SaveData_Counts(self): counts = {"dcount": self.dcount, "outday": self.outday} self.ObjectStore.SaveBytes('OS_counts', pickle.dumps(counts)) class CombinedMomentum(): def __init__(self, algo, symbol): self.one = algo.MOMP(symbol, 21, Resolution.Daily) self.three = algo.MOMP(symbol, 63, Resolution.Daily) self.six = algo.MOMP(symbol, 126, Resolution.Daily) def getValue(self): value = (self.one.Current.Value + self.three.Current.Value + self.six.Current.Value) / 3 return value class QQQ(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/vdn8trsn76505lz/QQQ.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = QQQ() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.Value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) index["Adj Close"] = float(data[5]) return index class TLT(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/9zhb9ec9s9pqulc/TLT.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = TLT() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.Value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) index["Adj Close"] = float(data[5]) return index class IEF(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/fvnu9zai31g5plg/IEF.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = IEF() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.Value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) index["Adj Close"] = float(data[5]) return index class VEU(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/b0ywadvwclo2xyd/VEU.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = VEU() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.Value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) return index class SPDN(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/slxq8xtarpq50rq/SPDN.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = SPDN() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.Value = data[4] index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) index["Adj Close"] = float(data[5]) return index class MOMENTUM(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("https://www.dropbox.com/s/c7dh6xdc55i9mmq/Indicator_SHY_XLI_with%20VEU.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLive): if not (line.strip() and line[0].isdigit()): return None index = MOMENTUM() index.Symbol = config.Symbol data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.EndTime = index.Time + timedelta(days=1) index.SetProperty("Indicator", str(data[1])) return index class CustomFeeModel: def GetOrderFee(self, parameters): self.trading_fee = 0.005 #Set fee per trade fee = parameters.Order.AbsoluteQuantity* self.trading_fee return OrderFee(CashAmount(fee, 'USD'))