Overall Statistics |
Total Trades 32 Average Win 3.11% Average Loss -3.53% Compounding Annual Return -9.361% Drawdown 40.400% Expectancy -0.123 Net Profit -6.080% Sharpe Ratio -0.045 Probabilistic Sharpe Ratio 17.851% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.88 Alpha -0.031 Beta 0.07 Annual Standard Deviation 0.359 Annual Variance 0.129 Information Ratio -0.624 Tracking Error 0.377 Treynor Ratio -0.23 Total Fees $116.46 |
import QuantConnect from datetime import datetime, timedelta from QuantConnect.Data.Custom.SEC import * class SECReport8KAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1, 1) self.SetEndDate(2019, 8, 21) self.SetCash(100000) self.UniverseSettings.Resolution = Resolution.Minute self.AddUniverseSelection(CoarseFundamentalUniverseSelectionModel(self.CoarseSelector)) #Request underlying equity data. ibm = self.AddEquity("IBM", Resolution.Minute).Symbol # Add news data for the underlying IBM asset earningsFiling = self.AddData(SECReport10Q, ibm).Symbol # Request 120 days of history with the SECReport10Q IBM custom data Symbol history = self.History(SECReport10Q, earningsFiling, 120, Resolution.Daily) # Count the number of items we get from our history request self.Debug(f"We got {len(history)} items from our history request") def CoarseSelector(self, coarse): # Add SEC data from the filtered coarse selection symbols = [i.Symbol for i in coarse if i.HasFundamentalData and i.DollarVolume > 50000000][:10] for symbol in symbols: self.AddData(SECReport8K, symbol) return symbols def OnData(self, data): # Store the symbols we want to long in a list # so that we can have an equal-weighted portfolio longEquitySymbols = [] # Get all SEC data and loop over it for report in data.Get(SECReport8K).Values: # Get the length of all contents contained within the report reportTextLength = sum([len(i.Text) for i in report.Report.Documents]) if reportTextLength > 20000: longEquitySymbols.append(report.Symbol.Underlying) for equitySymbol in longEquitySymbols: self.SetHoldings(equitySymbol, 1.0 / len(longEquitySymbols)) def OnSecuritiesChanged(self, changes): for r in [i for i in changes.RemovedSecurities if i.Symbol.SecurityType == SecurityType.Equity]: # If removed from the universe, liquidate and remove the custom data from the algorithm self.Liquidate(r.Symbol) self.RemoveSecurity(Symbol.CreateBase(SECReport8K, r.Symbol, Market.USA))