Overall Statistics
Total Trades
12
Average Win
0%
Average Loss
0%
Compounding Annual Return
0.653%
Drawdown
0.200%
Expectancy
0
Net Profit
0.057%
Sharpe Ratio
1.448
Probabilistic Sharpe Ratio
55.967%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
-0.003
Beta
0.017
Annual Standard Deviation
0.004
Annual Variance
0
Information Ratio
-6.322
Tracking Error
0.076
Treynor Ratio
0.3
Total Fees
$0.00
class CommodityAlphaModel(AlphaModel):
    def __init__(self, period):
        self.period = period
        self.resolution = Resolution.Daily
        self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.period)
        self.symbolData = {}
        
    def Update(self, context, data):
        insights = []

        for symbol, symbolData in self.symbolData.items():
            if not context.Portfolio[symbol].Invested:
                if symbolData.CanEmit:
                    if data.ContainsKey(symbol):
                        close = symbolData.QuoteBar.Close
                        highChannel = symbolData.Channel.UpperBand.Current.Value
                        lowChannel = symbolData.Channel.LowerBand.Current.Value
                        
                        if close >= highChannel:
                            direction = InsightDirection.Up
                            insights.append(Insight.Price(symbol, self.predictionInterval, direction, None, None))
                        elif close <= lowChannel:
                            direction = InsightDirection.Down
                            insights.append(Insight.Price(symbol, self.predictionInterval, direction, None, None))
                            
        return insights
        
    def OnSecuritiesChanged(self, context, changes):
        
        for removed in changes.RemovedSecurities:
            symbol = removed.Symbol
            if removed in self.symbolData:
                symbolData = self.symbolData.pop(symbol, None)
                if symbolData is not None:
                    symbolData.RemoveConsolidators(context)
            
        # initialize data for added securities
        symbols = [ x.Symbol for x in changes.AddedSecurities ]
        history = context.History(symbols, self.period, self.resolution)
        if history.empty: return
        tickers = history.index.levels[0]
    
        context.Debug("{} -- {} Added to Alpha Model".format(context.Time, [str(added.Symbol) for added in changes.AddedSecurities]))
        for added in changes.AddedSecurities:
            symbol = added.Symbol
            if symbol not in self.symbolData:
                context.Debug("{} -- {} Added to Alpha Model Symbol Data".format(context.Time, str(symbol)))
                data = SymbolData(context, added, self.period)
                self.symbolData[symbol] = data
                data.RegisterIndicators(context, self.resolution)
                if symbol not in tickers:
                    continue
                else:
                    data.WarmUpIndicators(history.loc[symbol])


class SymbolData:
    def __init__(self, context, security, lookback):
        self.context = context
        self.Security = security
        self.Symbol = security.Symbol
        self.Channel = DonchianChannel(self.Symbol, 20, Resolution.Daily)
        self.Consolidator = None
        self.QuoteBar = None
        self.Previous = None
        
        self.print = True
        
    def RegisterIndicators(self, context, resolution):
        self.Consolidator = context.ResolveConsolidator(self.Symbol, Resolution.Daily)
        self.Consolidator.DataConsolidated += self.OnDataConsolidated
        context.RegisterIndicator(self.Symbol, self.Channel, self.Consolidator)
        context.Debug("Indicator registered for {} @ {}".format(self.Symbol, context.Time))
        
    def OnDataConsolidated(self, sender, bar):
        if self.print:
            self.context.Debug("{} -- Data Consol. for {}: {}, Ending: {}".format(self.context.Time, self.Symbol, bar.Close, bar.EndTime))
            self.print = False
        self.QuoteBar = bar
        
    @property
    def CanEmit(self):
        # this will be getting checked at a higher freq. than the consolidator, check if a new Daily bar is available
        if self.Previous == self.QuoteBar:
            return False
            
        self.Previous = self.QuoteBar
        return self.Channel.IsReady
        
    def RemoveConsolidators(self, context):
        if self.Consolidator is not None:
            conext.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
        
    def WarmUpIndicators(self, history):
        for index, tuple in history.iterrows():
            tradeBar = TradeBar()
            tradeBar.Close = tuple['close']
            
            self.Channel.Update(tradeBar)
class CommodityPortfolioConstructionModel(PortfolioConstructionModel):
    
    def CreateTargets(self, context, insights):
        targets = []
        for insight in insights:
            targets.append(PortfolioTarget(insight.Symbol, insight.Direction))
        return targets
from Universe import CommodityUniverseModel
from Alpha import CommodityAlphaModel
from Portfolio import CommodityPortfolioConstructionModel
# from Execution import CommodityExecutionModel

class CommodityTrading(QCAlgorithm):

    def Initialize(self):
        # Set Start Date so that backtest has 5+ years of data
        self.SetStartDate(2018, 1, 1)
        self.SetEndDate(2018, 2, 1)

        # No need to set End Date as the final submission will be tested
        # up until the review date

        # Set $100k Strategy Cash to trade significant AUM
        self.SetCash(100000)

        # Use the Alpha Streams Brokerage Model, developed in conjunction with
        # funds to model their actual fees, costs, etc.
        # Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc.
        # self.SetBrokerageModel(AlphaStreamsBrokerageModel())
        
        self.SetExecution( ImmediateExecutionModel() )

        # self.SetPortfolioConstruction( EqualWeightingPortfolioConstructionModel() )
        self.SetPortfolioConstruction( CommodityPortfolioConstructionModel() )
        
        self.AddAlpha( CommodityAlphaModel(period=20) )
        
        self.UniverseSettings.Resolution = Resolution.Minute
        self.AddUniverseSelection( CommodityUniverseModel() )
        
        

    def OnData(self, data):
        '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
            Arguments:
                data: Slice object keyed by symbol containing the stock data
        '''

        # if not self.Portfolio.Invested:
        #   self.SetHoldings("SPY", 1)
from QuantConnect import *
from Selection.ManualUniverseSelectionModel import ManualUniverseSelectionModel

class CommodityUniverseModel(ManualUniverseSelectionModel):
    def __init__(self):
        metals = ["XAUUSD", "XAGUSD", "XCUUSD", "XPDUSD", "XPTUSD"]
        fuels = ["WTICOUSD", "BCOUSD", "NATGASUSD"]
        agri = ["SOYBNUSD", "CORNUSD", "WHEATUSD", "SUGARUSD"]
        universe = metals + fuels + agri
        super().__init__([Symbol.Create(x, SecurityType.Cfd, Market.Oanda) for x in universe])