Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -4.257 Tracking Error 0.068 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
from AlgorithmImports import * from datetime import datetime, date class AlertLightBrownHyena(QCAlgorithm): def Initialize(self): self.ticker = 'SPY' self.startingCash = 100000 self.startDate = '2023-07-01' self.endDate = '-' # Equities self.resolution = Resolution.Minute self.equity = self.AddEquity(self.ticker, self.resolution) #self.equity.SetDataNormalizationMode(DataNormalizationMode.Raw) # Backtesting self.SetStartDate(datetime.fromisoformat(self.startDate)) self.SetEndDate(datetime.fromisoformat(self.endDate)) if self.endDate != '-' else self.SetEndDate(datetime.now()) self.SetCash(self.startingCash) self.SetTimeZone("America/New_York") self.SetBenchmark(self.equity.Symbol) self.SetWarmUp(500) # Consolidators self.consolidator = self.Consolidate(self.equity.Symbol, timedelta(minutes=5), self.OnFiveMinData) # Indicators self.rsi = RelativeStrengthIndex(14, MovingAverageType.Simple) self.RegisterIndicator(self.equity.Symbol, self.rsi, self.consolidator) self.rsiSMA = IndicatorExtensions.SMA(self.rsi, 14) def OnFiveMinData(self, data): self.Log(f"Close: {round(data.Close, 2)}, RSI: {round(self.rsi.Current.Value, 2)}, RSI SMA: {round(self.rsiSMA.Current.Value, 2)}")