Overall Statistics |
Total Orders 1155 Average Win 1.53% Average Loss -1.34% Compounding Annual Return 21.512% Drawdown 48.000% Expectancy 0.379 Start Equity 100000 End Equity 1668052.59 Net Profit 1568.053% Sharpe Ratio 0.718 Sortino Ratio 0.806 Probabilistic Sharpe Ratio 10.977% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 1.14 Alpha 0.014 Beta 1.136 Annual Standard Deviation 0.217 Annual Variance 0.047 Information Ratio 0.307 Tracking Error 0.102 Treynor Ratio 0.137 Total Fees $5093.16 Estimated Strategy Capacity $170000000.00 Lowest Capacity Asset CTAS R735QTJ8XC9X Portfolio Turnover 2.17% |
# region imports from AlgorithmImports import * import math from QuantConnect.Data.UniverseSelection import SecurityChanges import numpy as np from scipy import stats from datetime import timedelta # endregion class Licentav3(QCAlgorithm): def Initialize(self): """ Initialize the algorithm, setting up the initial parameters, configurations, and universe. This includes setting the start date, adding a benchmark, enabling indicator warm-up, adding the reference security (SPY), and configuring the universe of ETFs. """ self._securities = set() # Set to hold the securities being tracked self.etf_symbols = [] # List to store ETF constituent symbols self.rebalance_flag = False # Flag to trigger rebalancing self.weights = dict() # Dictionary to store weights of ETF constituents self.SetStartDate(2010, 1, 1) # Set start date of the algorithm self.EnableAutomaticIndicatorWarmUp = True # Enable automatic indicator warm-up self.referenceSymbol = self.AddEquity("SPY", Resolution.Daily).Symbol # Add SPY as the reference symbol self.SetBenchmark("SPY") # Set SPY as the benchmark self.SetCash(100000) # Set starting cash to $100,000 # Set up reference rate of change (ROC) indicator with a window size of 5 years (252 trading days per year) self.referenceROC = self.calculate_log_return(self.referenceSymbol, 1, Resolution.Daily, Field.Close) self.referenceROC.Window.Size = 252 * 5 # 5 years of trading days history = self.History(self.referenceSymbol, 252 * 5 + 1, Resolution.Daily) # Fetch 5 years + 1 day of history for time, row in history.loc[self.referenceSymbol].iterrows(): self.referenceROC.Update(time, row.close) # Update ROC with historical data # Universe settings self.universe_settings.resolution = Resolution.Daily self.universe_settings.fill_forward = True # Add universe of ETFs self.AddUniverse(self.Universe.ETF("SPY", Market.USA, self.universe_settings, self.etf_constituents_filter)) def OnData(self, data: Slice): """ Process incoming data (called each time new data is received). Updates the securities being tracked and plots various metrics related to the calculated indicators. """ if len(self._securities) == 0: return # If there are no securities, return immediately for security in self._securities: security.update_indicators() # Update indicators for each security # Filter securities based on availability of various indicators all_securities = [x for x in self._securities] securities_with_beta = [x for x in all_securities if x.beta is not None] securities_with_cost_of_equity = [x for x in all_securities if x.cost_of_equity is not None] securities_with_eps = [x for x in all_securities if x.forward_eps is not None] securities_with_eps_and_cost_of_equity = [x for x in all_securities if x.forward_eps is not None and x.cost_of_equity is not None] securities_with_pvgo = [x for x in all_securities if x.pvgo is not None] securities_with_implied_growth = [x for x in all_securities if x.implied_growth is not None] securities_with_expected_growth = [x for x in all_securities if x.expected_growth is not None] # Plot the counts of securities with the various indicators self.Plot('Securities', 'Total', len(all_securities)) self.Plot('Securities', 'Beta', len(securities_with_beta)) self.Plot('Securities', 'Cost of Equity', len(securities_with_cost_of_equity)) self.Plot('Securities', 'EPS1', len(securities_with_eps)) self.Plot('Securities', 'EPS1 and Cost of Equity', len(securities_with_eps_and_cost_of_equity)) self.Plot('Securities', 'PVGO', len(securities_with_pvgo)) self.Plot('Securities', 'Implied Growth', len(securities_with_implied_growth)) self.Plot('Securities', 'Expected Growth', len(securities_with_expected_growth)) def calculate_market_return(self): """ Calculate the annualized market return (Rm) using the reference rate of change (ROC) indicator. This method aggregates the daily returns stored in the ROC window and annualizes the result. """ daily_returns = [x.Value for x in self.referenceROC.Window] average_daily_return = sum(daily_returns) / len(daily_returns) annualized_return = average_daily_return * 252 # Annualize the daily return (252 trading days per year) return annualized_return def get_risk_free_rate(self): """ Retrieve the risk-free rate (Rf) from the risk-free interest rate model at the current algorithm time. """ risk_free_rate = self.risk_free_interest_rate_model.GetInterestRate(self.Time) return risk_free_rate ### Algorithm specific methods def etf_constituents_filter(self, constituents: List[ETFConstituentUniverse]) -> List[Symbol]: """ Filter the ETF constituents and update the internal list of ETF symbols and their weights. Sets the rebalance flag if new constituents are detected. """ etf_symbols = [c.Symbol.ToString() for c in constituents] new_symbols = list(set(etf_symbols) - set(self.etf_symbols)) if len(new_symbols) > 0: self.etf_symbols = etf_symbols for c in constituents: self.weights[c.Symbol] = c.Weight self.rebalance_flag = True return [c.Symbol for c in constituents] else: return Universe.Unchanged def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: """ Handle changes in the universe of securities. Removes securities that are no longer in the universe and deregisters their indicators. Adds new securities to the tracking set and initializes their indicators. """ for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # Liquidate removed security if it is invested security_data = [x for x in self._securities if x.Symbol == security.Symbol] if security_data: self.DeregisterIndicator(security_data[0].rate_of_change) self.DeregisterIndicator(security_data[0].beta_indicator) self._securities.discard(security_data[0]) for security in changes.AddedSecurities: if security.Symbol == self.referenceSymbol: continue self._securities.add(SymbolData(self, security.Symbol)) class SymbolData: def __init__(self, algorithm: QCAlgorithm, symbol: Symbol): """ Initialize the SymbolData class, setting up various indicators and attributes for each ETF constituent symbol. This includes setting up rate of change (ROC) and beta indicators, and initializing historical data. """ self.Symbol = symbol self.algorithm = algorithm self.referenceSymbol = algorithm.referenceSymbol self.weight: Decimal = algorithm.weights[symbol] # Set up rate of change (ROC) indicator with a window size of 5 years (252 trading days per year) self.rate_of_change = algorithm.calculate_log_return(symbol, 1) self.rate_of_change.Window.Size = 252 * 5 self.ecdf = None self.rate_of_change.Updated += self.update_ecdf # Set up beta indicator with a window size of 5 years self.beta_indicator = algorithm.B(self.Symbol, self.referenceSymbol, 252 * 5, Resolution.Daily) # Warm up the ROC indicator with historical data history = algorithm.History([self.referenceSymbol], 252 * 5 + 1, Resolution.Daily) for time, row in history.loc[self.referenceSymbol].iterrows(): self.rate_of_change.Update(time, row.close) # Initialize other attributes self.price = None self.beta = None self.cost_of_equity = None self.forward_eps = None self.pvgo = None self.implied_growth = None self.expected_growth = None def update_price(self): """ Update the current price of the security. """ price = self.algorithm.Securities[self.Symbol].Price if not math.isnan(price): self.price = price def update_beta(self): """ Update the beta value using the beta indicator. """ beta = self.beta_indicator.Current.Value if not math.isnan(beta) and beta != 0: self.beta = beta def update_cost_of_equity(self): """ Calculate and update the cost of equity (k) using the risk-free rate (Rf), market return (Rm), and beta. """ risk_free_rate = self.algorithm.get_risk_free_rate() market_return = self.algorithm.calculate_market_return() beta = self.beta if beta is not None: self.cost_of_equity = risk_free_rate + beta * (market_return - risk_free_rate) def update_forward_eps(self): """ Calculate and update the forward earnings per share (EPS1) using the forward earning yield and price. """ earning_yield = self.algorithm.Securities[self.Symbol].Fundamentals.ValuationRatios.ForwardEarningYield price = self.price if not math.isnan(earning_yield) and earning_yield != 0: self.forward_eps = earning_yield * price def update_pvgo(self): """ Calculate and update the present value of growth opportunities (PVGO). """ price = self.price forward_eps = self.forward_eps cost_of_equity = self.cost_of_equity if forward_eps is not None and cost_of_equity is not None and price is not None: self.pvgo = price - forward_eps / cost_of_equity def update_implied_growth(self): """ Calculate and update the implied growth rate. """ cost_of_equity = self.cost_of_equity pvgo = self.pvgo forward_eps = self.forward_eps if forward_eps is not None and pvgo is not None: self.implied_growth = cost_of_equity * pvgo / (forward_eps + pvgo) def update_expected_growth(self): """ Calculate and update the expected growth rate using the empirical cumulative distribution function (ecdf). """ implied_growth = self.implied_growth ecdf = self.ecdf historical_growth = [x.Value for x in self.rate_of_change.Window] if implied_growth is not None and ecdf is not None: daily_implied_growth = implied_growth / 252 p_below = ecdf.cdf.evaluate(daily_implied_growth) p_above = 1 - p_below mean_below = np.mean([x for x in historical_growth if x < daily_implied_growth]) mean_above = np.mean([x for x in historical_growth if x > daily_implied_growth]) self.expected_growth = p_below * mean_below + p_above * mean_above def update_ecdf(self, sender, updated_value): """ Update the empirical cumulative distribution function (ecdf) of historical returns on capital (ROC). """ if self.rate_of_change.Window.IsReady: historical_values = [x.Value for x in self.rate_of_change.Window] self.ecdf = stats.ecdf(historical_values) def update_indicators(self): """ Update all calculated values for the symbol, including price, beta, cost of equity, forward EPS, PVGO, implied growth, and expected growth. """ self.update_price() self.update_beta() self.update_cost_of_equity() self.update_forward_eps() self.update_pvgo() self.update_implied_growth() self.update_expected_growth()
# region imports from AlgorithmImports import * import math from QuantConnect.Data.UniverseSelection import SecurityChanges import numpy as np from scipy import stats from datetime import timedelta # endregion """ Algorithm: Licentav3 Overview: This algorithm is designed to invest in the constituents of the SPY ETF, weighted by their implied growth rates, with monthly rebalancing. The core idea is to use various financial indicators and metrics to identify and weight investments based on their potential for growth. The calculations include Logarithmic Returns (LogR), Present Value of Growth Opportunities (PVGO), beta, cost of equity, and Forward Earnings Per Share (EPS1). Key Concepts and Calculations: 1. Logarithmic Returns (LogR): - Calculated as: LogR = ln(Current Price / Previous Price) - Frequency: Calculated daily - Time Period: 5 years (1260 trading days) - Purpose: Used to calculate beta, historical market returns, and the empirical cumulative distribution function (ecdf). 2. Present Value of Growth Opportunities (PVGO): - Calculated as: PVGO = Price - (EPS1 / Cost of Equity) - Frequency: Calculated monthly - Inputs: Current price, Forward Earnings Per Share (EPS1), and cost of equity (k) - Purpose: Determines the value of growth opportunities beyond the no-growth scenario. 3. Beta: - Calculated as: Beta = Covariance(Security Returns, Market Returns) / Variance(Market Returns) - Frequency: Calculated monthly - Time Period: 5 years (1260 trading days) - Purpose: Measures the sensitivity of the security's returns to market returns, used in the cost of equity calculation. 4. Cost of Equity (k): - Calculated as: k = Risk-Free Rate + Beta * (Market Return - Risk-Free Rate) - Frequency: Calculated monthly - Inputs: Risk-free rate, historical market return, and beta - Purpose: Represents the return required by investors for taking on the risk of the security. 5. Forward Earnings Per Share (EPS1): - Calculated as: EPS1 = Forward Earning Yield * Current Price - Frequency: Calculated monthly - Inputs: Forward earning yield and current price - Purpose: Projects future earnings based on the most recent forecast data. 6. Empirical Cumulative Distribution Function (ecdf): - Constructed using historical daily LogR data - Purpose: Used to calculate expected growth rates by understanding the distribution of historical returns. Workflow: 1. Initialize: Sets up initial parameters, universe settings, and historical data for SPY. 2. OnData: Processes incoming data, updates indicators for each security, and plots various metrics. 3. Monthly Rebalancing: Adjusts portfolio weights based on the latest implied growth values. Detailed Steps: - Initialize indicators and historical data for each SPY constituent. - Calculate daily LogR to maintain up-to-date returns data. - At the end of each month, update beta, cost of equity, EPS1, and PVGO using the latest data. - Assign weights to each constituent based on the calculated implied growth. - Implement monthly rebalancing to adjust portfolio weights according to the latest calculations. By following this structured approach, the algorithm aims to make informed investment decisions based on comprehensive financial metrics, aligning the portfolio with securities that exhibit strong growth potential. """ class Licentav3(QCAlgorithm): def Initialize(self): self._securities = set() # Set to hold the securities being tracked self.etf_symbols = [] self.rebalance_flag = False self.weights = dict() self.SetStartDate(2010, 1, 1) # self.SetEndDate(2010, 12, 1) self.EnableAutomaticIndicatorWarmUp = True self.referenceSymbol = self.AddEquity("QQQ", Resolution.Daily).Symbol self.SetBenchmark("QQQ") self.testSymbols = None # ["AAPL"] # "TSLA", "AAPL","MSFT","ZM"] self.SetCash(100000) # Flags to store or run from QC cache self.runFromCache = False self.updateCache = True # Set up reference rate of change (ROC) indicator with a window size of 5 years (252 trading days per year) self.referenceROC = self.logr(self.referenceSymbol, 1, Resolution.Daily, Field.Close) self.referenceROC.Window.Size = 252*5 history = self.History(self.referenceSymbol, 252*5+1, Resolution.Daily) for time, row in history.loc[self.referenceSymbol].iterrows(): self.referenceROC.Update(time, row.close) #Universe settings self.universe_settings.resolution = Resolution.Daily self.universe_settings.fill_forward = True # Add universe of ETFs self.add_universe(self.universe.etf("QQQ", Market.USA, self.universe_settings, self.etf_constituents_filter)) # schedule monthly rebalance self.Schedule.On( self.DateRules.MonthStart(self.referenceSymbol), self.TimeRules.AfterMarketOpen(self.referenceSymbol, 31), self.SetRebalanceFlag ) def SetRebalanceFlag(self): if self.Time.month in [1, 4, 7, 10]: self.debug("rebalancing") self.rebalance_flag = True self.liquidate() def OnData(self, data: Slice): if len(self._securities) == 0: return if(self.rebalance_flag): self.rebalance_flag = False for security in self._securities: security.update() securities = [x for x in self._securities] securities_with_beta = [x for x in securities if x.beta != None] securities_with_cost_of_equity = [x for x in securities if x.k != None] securities_with_eps = [x for x in securities if x.EPS1 != None] securities_with_eps_and_k = [x for x in securities if x.EPS1 != None and x.k != None] securities_with_pgvo = [x for x in securities if x.PVGO != None] securities_with_implied_growth = [x for x in securities if x.implied_growth != None] securities_with_expected_growth = [x for x in securities if x.expected_growth != None] # Weighted by implied growth # ---------------------------- # top_ten_implied_growth_stocks = sorted(securities_with_implied_growth, key=lambda x: x.implied_growth, reverse=True)[:10] # total_implied_growth = sum(x.implied_growth for x in top_ten_implied_growth_stocks) # for stock in top_ten_implied_growth_stocks: # weight = stock.implied_growth / total_implied_growth # self.set_holdings(stock.Symbol, weight) # Weighted by expected growth # ------------------------------ top_ten_expected_growth_stocks = sorted(securities_with_expected_growth, key=lambda x: x.expected_growth, reverse=True)[:10] total_expected_growth = sum(x.expected_growth for x in top_ten_expected_growth_stocks) for stock in top_ten_expected_growth_stocks: weight = stock.expected_growth / total_expected_growth self.set_holdings(stock.Symbol, weight) self.plot('Secutities', 'Total', len(securities)) # self.plot('Secutities', 'Beta', len(securities_with_beta)) # self.plot('Secutities', 'Cost of Equity', len(securities_with_cost_of_equity)) # self.plot('Secutities', 'EPS1', len(securities_with_eps)) # self.plot('Secutities', 'EPS1 and k', len(securities_with_eps_and_k)) # self.plot('Secutities', 'PVGO', len(securities_with_pgvo)) # self.plot('Secutities', 'Implied Growth', len(securities_with_implied_growth)) # self.plot('Secutities', 'Expected Growth', len(securities_with_expected_growth)) def getRm(self): lst = [x.Value for x in self.referenceROC.Window] Rm = sum(lst) / len(lst) # Annualize the market return Rm = Rm * 252 return Rm def getRf(self): # Risk free rate Rf = self.risk_free_interest_rate_model.get_interest_rate(self.time) return Rf ### Algorithm specific methods def etf_constituents_filter(self, constituents: List[ETFConstituentUniverse]) -> List[Symbol]: etf = [c.Symbol.ToString() for c in constituents] difference = list(set(etf) - set(self.etf_symbols)) if len(difference) > 0: self.etf_symbols = etf for c in constituents: self.weights[c.Symbol] = c.Weight # self.rebalance_flag = True return [c.Symbol for c in constituents] else: return Universe.UNCHANGED def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.removed_securities: # If removed security is in the portfolio, liquidate it if security.Invested: self.Liquidate(security.Symbol) # Remove the security from the _securieties list and deregister the indicators security_data = [x for x in self._securities if x.Symbol == security.Symbol] if(len(security_data) > 0): security_data = security_data[0] self.DeregisterIndicator(security_data.roc) self.DeregisterIndicator(security_data.betaIndicator) self._securities.discard(security_data) for security in changes.added_securities: if security.Symbol == self.referenceSymbol: continue if (self.testSymbols is None or security.Symbol.value in self.testSymbols): self._securities.add(SymbolData(self, security.Symbol)) class SymbolData: def __init__(self, algorithm: QCAlgorithm , symbol: Symbol): self.Symbol = symbol self.algorithm = algorithm self.referenceSymbol = algorithm.referenceSymbol self.weight: Decimal = self.algorithm.weights[symbol] # Setup ROC indicator and ecdf self.roc = algorithm.logr(symbol, 1) self.roc.Window.Size = 252*5 self.ecdf = None self.roc.Updated += self.update_ecdf # Setup Beta indicator self.betaIndicator = self.algorithm.B(self.Symbol, self.referenceSymbol, 252*5, Resolution.Daily) # Warm up the indicator history = self.algorithm.History([self.referenceSymbol], 252*5+1, Resolution.Daily) for time, row in history.loc[self.referenceSymbol].iterrows(): self.roc.Update(time, row.close) self.price = None self.beta = None self.k = None self.EPS1 = None self.PVGO = None self.implied_growth = None self.expected_growth = None def updatePrice(self): price = self.algorithm.Securities[self.Symbol].Price if not math.isnan(price): self.price = price def updateBeta(self): beta = self.betaIndicator.Current.Value if not math.isnan(beta) and beta != 0: self.beta = beta def updateCostOfEquity(self): Rf = self.algorithm.getRf() Rm = self.algorithm.getRm() beta = self.beta if beta != None: # Calculate the cost of equity k = Rf + beta * (Rm - Rf) self.k = k def updateEPS1(self): earningYield = self.algorithm.Securities[self.Symbol].Fundamentals.ValuationRatios.ForwardEarningYield price = self.price if math.isnan(earningYield) == False and earningYield != 0: eps1 = earningYield * price self.EPS1 = eps1 def updatePVGO(self): price = self.price EPS1 = self.EPS1 k = self.k if EPS1 != None and k != None and price != None: #Calculate PVGO PVGO = price - EPS1/k self.PVGO = PVGO def updateImpliedGrowth(self): k = self.k PVGO = self.PVGO EPS1 = self.EPS1 if EPS1 != None and PVGO != None: implied_growth = k * PVGO/(EPS1+PVGO) self.implied_growth = implied_growth def updateExpectedGrowth(self): implied_growth = self.implied_growth ecdf = self.ecdf historical_growth = [x.Value for x in self.roc.Window] if implied_growth != None and ecdf != None: daily_implied_growth = implied_growth/252 p_below = ecdf.cdf.evaluate(daily_implied_growth) p_above = 1 - p_below mean_below = np.mean([x for x in historical_growth if x < daily_implied_growth]) mean_above = np.mean([x for x in historical_growth if x > daily_implied_growth]) expected_growth = p_below * mean_below + p_above * mean_above self.expected_growth = expected_growth def update_ecdf(self, s, item): if self.roc.Window.IsReady: lst = [x.Value for x in self.roc.Window] ecdf = stats.ecdf(lst) self.ecdf = ecdf def update(self): self.updatePrice() self.updateBeta() self.updateCostOfEquity() self.updateEPS1() self.updatePVGO() self.updateImpliedGrowth() self.updateExpectedGrowth() if( self.algorithm.testSymbols is not None and \ self.Symbol.value in self.algorithm.testSymbols and \ self.implied_growth is not None ): # self.algorithm.plot('Growth', f"{self.Symbol.value} Implied", self.implied_growth) self.algorithm.plot('Growth', f"{self.Symbol.value} Expected", self.expected_growth) self.algorithm.plot('EPS', f"{self.Symbol.value} EPS", self.EPS1)