Overall Statistics |
Total Trades 48 Average Win 0.84% Average Loss -2.18% Compounding Annual Return -40.090% Drawdown 52.300% Expectancy -0.733 Net Profit -40.174% Sharpe Ratio -0.83 Probabilistic Sharpe Ratio 1.449% Loss Rate 81% Win Rate 19% Profit-Loss Ratio 0.39 Alpha -0.336 Beta -0.138 Annual Standard Deviation 0.36 Annual Variance 0.13 Information Ratio -0.057 Tracking Error 0.541 Treynor Ratio 2.162 Total Fees $48.11 |
# https://quantpedia.com/Screener/Details/3 # Use 10 sector ETFs. Pick 3 ETFs with strongest 12 month momentum into your portfolio # and weigh them equally. Hold for 1 month and then rebalance. import pandas as pd from datetime import datetime class SectorMomentumAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) # self.SetEndDate(datetime.now()) self.SetEndDate(2009,1,1) self.SetCash(10000) # create a dictionary to store momentum indicators for all symbols self.data = {} period = 3*21 # choose ten sector ETFs self.symbols = ["VNQ", # Vanguard Real Estate Index Fund "XLK", # Technology Select Sector SPDR Fund "XLE", # Energy Select Sector SPDR Fund "XLV", # Health Care Select Sector SPDR Fund "XLF", # Financial Select Sector SPDR Fund "KBE", # SPDR S&P Bank ETF "VAW", # Vanguard Materials ETF "XLY", # Consumer Discretionary Select Sector SPDR Fund "XLP", # Consumer Staples Select Sector SPDR Fund "VGT"] # Vanguard Information Technology ETF # warm up the MOM indicator self.SetWarmUp(period) for symbol in self.symbols: self.AddEquity(symbol, Resolution.Daily) self.data[symbol] = self.MOM(symbol, period, Resolution.Daily) # shcedule the function to fire at the month start self.Schedule.On(self.DateRules.MonthStart("VNQ"), self.TimeRules.AfterMarketOpen("VNQ"), self.Rebalance) def OnData(self, data): pass def Rebalance(self): if self.IsWarmingUp: return top3 = pd.Series(self.data).sort_values(ascending = False)[:3] top3 = top3.apply(lambda x: x.Current.Value).where(lambda x : x > 0) for kvp in self.Portfolio: security_hold = kvp.Value # liquidate the security which is no longer in the top3 momentum list if security_hold.Invested and (security_hold.Symbol.Value not in top3.index): self.Liquidate(security_hold.Symbol) for symbol in top3.index: self.SetHoldings(symbol, 1/len(top3))