Overall Statistics |
Total Trades 106 Average Win 6.46% Average Loss -4.53% Compounding Annual Return 0.744% Drawdown 42.900% Expectancy 0.095 Net Profit 8.370% Sharpe Ratio 0.125 Probabilistic Sharpe Ratio 0.198% Loss Rate 55% Win Rate 45% Profit-Loss Ratio 1.43 Alpha 0.017 Beta 0.012 Annual Standard Deviation 0.147 Annual Variance 0.022 Information Ratio -0.559 Tracking Error 0.226 Treynor Ratio 1.582 Total Fees $323.09 |
from datetime import datetime,timedelta import numpy as np class ScheduledEventsAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) # Set Start Date self.SetEndDate(2020, 11, 1) # Set end date self.SetCash(25000) # Set Strategy Cash #self.symbol="XLK" self.XLK = self.AddEquity("XLK", Resolution.Hour) self.DBA = self.AddEquity("DBA", Resolution.Hour) #self.forex = self.AddForex(self.symbol, Resolution.Minute, Market.Oanda) #self.SetBrokerageModel(BrokerageName.Alpaca) #self.SetBrokerageModel(BrokerageName.Oanda) def OnData(self, data): if not self.Portfolio.Invested and self.Time.month==5: self.SetHoldings("XLK",1) self.SetHoldings("DBA",-1) if self.Portfolio.Invested and self.Time.month==9: self.Liquidate() if self.Portfolio.Invested and self.Time.month==2: self.Liquidate() if not self.Portfolio.Invested and self.Time.month==10: self.SetHoldings("DBA",1) self.SetHoldings("XLK",-1)