Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System.Core") AddReference("System.Collections") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") from System import * from System.Collections.Generic import List from QuantConnect import * from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * ### <summary> ### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="universes" /> ### <meta name="tag" content="coarse universes" /> ### <meta name="tag" content="fine universes" /> class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,01,06) #Set Start Date self.SetEndDate(2014,01,07) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> # - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 5 self._changes = SecurityChanges.None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False) # take the top entries from our sorted collection return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] def OnData(self, data): # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # Set dictionary of indicators self.indicator = {} self.Log("SECS : ".format(self._changes.AddedSecurities)) # Create indicator & check Price for security in self._changes.AddedSecurities: self.indicator[security.Symbol] = self.ATR(security.Symbol, 20, Resolution.Daily) #self.Log("SECURITY : ".format(self.Securities[security.Symbol])) self.Log("SECURITY : ".format(security.Symbol)) #self.Log("ATR : ".format(self.indicator[security.Symbol].AverageTrueRange.Current.Value)) self.Log("PRICE : ".format(self.Securities[security.Symbol].Price)) #def OnSecuritiesChanged(self, changes): #self._changes = changes #self._changes = SecurityChanges.None; # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes