Overall Statistics |
Total Trades 1568 Average Win 0.76% Average Loss -0.67% Compounding Annual Return 3.204% Drawdown 33.400% Expectancy 0.069 Net Profit 35.313% Sharpe Ratio 0.29 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.14 Alpha 0.024 Beta 0.13 Annual Standard Deviation 0.143 Annual Variance 0.02 Information Ratio -0.475 Tracking Error 0.19 Treynor Ratio 0.318 Total Fees $2354.90 |
import numpy as np class FamaFrenchFiveFactorsAlgorithm(QCAlgorithm): ''' Stocks Selecting Strategy based on Fama French 5 Factors Model Reference: https://tevgeniou.github.io/EquityRiskFactors/bibliography/FiveFactor.pdf ''' def Initialize(self): self.SetStartDate(2010, 1, 1) # Set Start Date self.SetEndDate(2019, 8, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.num_coarse = 200 # Number of symbols selected at Coarse Selection self.num_long = 5 # Number of stocks to long self.num_short = 5 # Number of stocks to short self.longSymbols = [] # Contains the stocks we'd like to long self.shortSymbols = [] # Contains the stocks we'd like to short self.nextLiquidate = self.Time # Initialize last trade time self.rebalance_days = 30 # Set the weights of each factor self.beta_m = 1 self.beta_s = 1 self.beta_h = 1 self.beta_r = 1 self.beta_c = 1 def CoarseSelectionFunction(self, coarse): '''Drop securities which have no fundamental data or have too low prices. Select those with highest by dollar volume''' if self.Time < self.nextLiquidate: return Universe.Unchanged selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5], key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in selected[:self.num_coarse]] def FineSelectionFunction(self, fine): '''Select securities with highest score on Fama French 5 factors''' # Select stocks with these 5 factors: # MKT -- Book value per share: Value # SMB -- TotalEquity: Size # HML -- Operation profit margin: Quality # RMW -- ROE: Profitability # CMA -- TotalAssetsGrowth: Investment Pattern filtered = [x for x in fine if x.ValuationRatios.BookValuePerShare and x.FinancialStatements.BalanceSheet.TotalEquity and x.OperationRatios.OperationMargin.Value and x.OperationRatios.ROE and x.OperationRatios.TotalAssetsGrowth] # Sort by factors sortedByMkt = sorted(filtered, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) sortedBySmb = sorted(filtered, key=lambda x: x.FinancialStatements.BalanceSheet.TotalEquity.Value, reverse=True) sortedByHml = sorted(filtered, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True) sortedByRmw = sorted(filtered, key=lambda x: x.OperationRatios.ROE.Value, reverse=True) sortedByCma = sorted(filtered, key=lambda x: x.OperationRatios.TotalAssetsGrowth.Value, reverse=False) stockBySymbol = {} # Get the rank based on 5 factors for every stock for index, stock in enumerate(sortedByMkt): mktRank = self.beta_m * index smbRank = self.beta_s * sortedBySmb.index(stock) hmlRank = self.beta_h * sortedByHml.index(stock) rmwRank = self.beta_r * sortedByRmw.index(stock) cmaRank = self.beta_c * sortedByCma.index(stock) avgRank = np.mean([mktRank,smbRank,hmlRank,rmwRank,cmaRank]) stockBySymbol[stock.Symbol] = avgRank sorted_dict = sorted(stockBySymbol.items(), key = lambda x: x[1], reverse = True) symbols = [x[0] for x in sorted_dict] # Pick the stocks with the highest scores to long self.longSymbols= symbols[:self.num_long] # Pick the stocks with the lowest scores to short self.shortSymbols = symbols[-self.num_short:] return self.longSymbols + self.shortSymbols def OnData(self, data): '''Rebalance Every self.rebalance_days''' # Liquidate stocks in the end of every month if self.Time >= self.nextLiquidate: for holding in self.Portfolio.Values: # If the holding is in the long/short list for the next month, don't liquidate if holding.Symbol in self.longSymbols or holding.Symbol in self.shortSymbols: continue # If the holding is not in the list, liquidate if holding.Invested: self.Liquidate(holding.Symbol) count = len(self.longSymbols + self.shortSymbols) # It means the long & short lists for the month have been cleared if count == 0: return # Open long position at the start of every month for symbol in self.longSymbols: self.SetHoldings(symbol, 1/count) # Open short position at the start of every month for symbol in self.shortSymbols: self.SetHoldings(symbol, -1/count) # Set the Liquidate Date self.nextLiquidate = self.Time + timedelta(self.rebalance_days) # After opening positions, clear the long & short symbol lists until next universe selection self.longSymbols.clear() self.shortSymbols.clear()