Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class CoarseFineFundamentalATRComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014, 1, 1) #Set Start Date self.SetEndDate(2016, 1, 1) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # An indicator(or any rolling window) needs data(updates) to have a value self.atr_window = 10 self.UniverseSettings.MinimumTimeInUniverse = self.atr_window self.SetWarmUp(self.atr_window) # this add universe method accepts two parameters: self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Set dictionary of indicators self.indicators = {} self.__numberOfSymbols = 00 self.__numberOfSymbolsFine = 10 def OnData(self, data): for symbol in self.universe: # is symbol iin Slice object? (do we even have data on this step for this asset) if not data.ContainsKey(symbol): continue #if data.ContainsKey(symbol): # self.indicators[symbol].update_value(self.Time, data[symbol].Price) # new symbol? setup indicator object. Then update if symbol not in self.indicators: self.indicators[symbol] = SymbolData(symbol, self, self.atr_window) # update by bar #self.indicators[symbol].update_bar(data[symbol]) #update by value #if data.ContainsKey(symbol): # self.indicators[symbol].update_value(self.Time, data[symbol].Price) #self.indicators[symbol].update_value(self.Time, data[symbol].Price) if self.IsWarmingUp: continue self.Log(str(symbol) + " : " + str(self.indicators[symbol].get_atr())) #self.Log("SYMBOL : ".format(symbol.Price)) self.Log("PRICE : {}".format(str(self.Securities[symbol].Price))) #self.Log("PRICE : ".format(self.Securities[symbol].Price.Current.Value)) #self.Log("PRICE : ".format(self.Securities.UniverseManager.Values[symbol])) # now you can use logic to trade, random example: lowerband = self.indicators[symbol].get_atr() upperband = self.indicators[symbol].get_atr2() # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=False) # resulting symbols self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # take the top entries from our sorted collection return self.universe # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): # liquidate removed securities for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # clean up del self.indicators[security.Symbol] class SymbolData(object): def __init__(self, symbol, context, window): self.symbol = symbol """ I had to pass ATR from outside object to get it to work, could pass context and use any indica var atr = ATR(Symbol symbol, int period, MovingAverageType type = null, Resolution resolution = null, Func`2[Data.IBaseData,Data.Market.IBaseDataBar] selector = null) """ self.window = window #self.indicator = context.EMA(symbol, self.window) #self.indicator = context.BB(symbol, self.window) self.indicator = context.BB(symbol,12,2,MovingAverageType.Simple,Resolution.Daily) self.indicator2 = context.BB(symbol,12,1,MovingAverageType.Simple,Resolution.Daily) self.atr = 0.0 """ Runtime Error: Python.Runtime.PythonException: NotSupportedException : AverageTrueRange does not support Update(DateTime, decimal) method overload. Use Update(IBaseDataBar) instead. """ def update_bar(self, bar): self.indicator.Update(bar) def update_value(self, time, value): self.indicator.Update(time, value) def get_atr(self): #return self.indicator.Current.Value return self.indicator.LowerBand.Current.Value def get_atr2(self): #return self.indicator.Current.Value return self.indicator2.UpperBand.Current.Value
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System.Core") AddReference("System.Collections") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") from System import * from System.Collections.Generic import List from QuantConnect import * from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * ### <summary> ### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="universes" /> ### <meta name="tag" content="coarse universes" /> ### <meta name="tag" content="fine universes" /> class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,01,06) #Set Start Date self.SetEndDate(2014,01,07) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> # - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Set dictionary of indicators self.indicator = {} self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 5 self._changes = SecurityChanges.None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False) # Here we want to get our inititialized indicator # We are going to use a dictionary to refer the object that will keep the moving averages for cf in fine: if cf.Symbol not in self.indicator: self.indicator[cf.Symbol] = SymbolData(cf.Symbol) # Updates the SymbolData object with current EOD price avg = self.indicator[cf.Symbol] avg.update(cf.EndTime, cf.Price) # take the top entries from our sorted collection return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] def OnData(self, data): # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # Set dictionary of indicators #self.indicator = {} self.Log("SECS : ".format(self._changes.AddedSecurities)) # Create indicator & check Price for security in self._changes.AddedSecurities: self.indicator[security.Symbol] = self.ATR(security.Symbol, 5, Resolution.Daily) #self.Log("SECURITY : ".format(self.Securities[security.Symbol])) self.Log("SECURITY : ".format(security.Symbol)) #self.Log("ATR : ".format(self.indicator[security.Symbol].AverageTrueRange.Current.Value)) self.Log("PRICE : ".format(self.Securities[security.Symbol].Price)) #def OnSecuritiesChanged(self, changes): #self._changes = changes #self._changes = SecurityChanges.None; # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes class SymbolData(object): def __init__(self, symbol): self.symbol = symbol self.indicator = ExponentialMovingAverage(100) #self.indicator = AverageTrueRange(5) #self.indicator = BollingerBands(5) self.scale = 0 def update(self, time, value): if self.indicator.Update(time, value): indicator = self.indicator.Current.Value