Overall Statistics |
Total Trades 7684 Average Win 0.14% Average Loss -0.15% Compounding Annual Return -3.685% Drawdown 27.400% Expectancy -0.041 Net Profit -21.176% Sharpe Ratio -0.561 Probabilistic Sharpe Ratio 0.001% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 0.99 Alpha -0.029 Beta -0.004 Annual Standard Deviation 0.052 Annual Variance 0.003 Information Ratio -0.696 Tracking Error 0.168 Treynor Ratio 7.904 Total Fees $901.46 |
# https://quantpedia.com/strategies/reversal-during-earnings-announcements/ # # The investment universe consists of stocks listed at NYSE, AMEX, and NASDAQ, whose daily price data are available at the CRSP database. # Earnings-announcement dates are collected from Compustat. Firstly, the investor sorts stocks into quintiles based on firm size. Then he # further sorts the stocks in the top quintile (the biggest) into quintiles based on their average returns in the 3-day window between # t-4 and t-2, where t is the day of the earnings announcement. The investor goes long on the bottom quintile (past losers) and short on # the top quintile (past winners) and holds the stocks during the 3-day window between t-1, t, and t+1. Stocks in the portfolios are # weighted equally. import fk_tools import numpy as np from collections import deque class ReversalDuringEarningsAnnouncements(QCAlgorithm): def Initialize(self): self.SetStartDate(2014, 1, 1) self.SetCash(100000) self.ear_period = 3 self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol # Daily price data. self.data = {} # Monthly selected universe. self.last_coarse = [] self.coarse_count = 1000 # Import earnigns data. self.earnings_data = {} # Available symbols from earning_dates.csv. self.symbols = set() self.first_date = None csv_string_file = self.Download('data.quantpedia.com/backtesting_data/economic/earning_dates.csv') lines = csv_string_file.split('\r\n') for line in lines: line_split = line.split(';') date = datetime.strptime(line_split[0], "%Y-%m-%d").date() if not self.first_date: self.first_date = date self.earnings_data[date] = [] for i in range(1, len(line_split)): symbol = line_split[i] self.earnings_data[date].append(symbol) self.symbols.add(symbol) # EAR history for previous quarter used for statistics. self.ear_previous_quarter = [] self.ear_actual_quarter = [] # 5 equally weighted brackets for traded symbols. - 20 symbols long , 20 for short, 3 days of holding. self.trade_manager = fk_tools.TradeManager(self, 20, 20, 3) self.month = 12 self.selection_flag = False self.rebalance_flag = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction) self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection) def OnSecuritiesChanged(self, changes): for security in changes.AddedSecurities: symbol = security.Symbol security.SetFeeModel(fk_tools.CustomFeeModel(self)) if symbol not in self.data: self.data[symbol] = deque(maxlen = self.ear_period) for security in changes.RemovedSecurities: symbol = security.Symbol if symbol in self.data: del self.data[symbol] def CoarseSelectionFunction(self, coarse): if not self.selection_flag: return Universe.Unchanged selected = sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5 and x.Symbol.Value in self.symbols], key=lambda x: x.DollarVolume, reverse=True) self.selection_flag = False return [x.Symbol for x in selected[:self.coarse_count]] def OnData(self, data): date_to_lookup = (self.Time + timedelta(days=1)).date() # Liquidate opened symbols after three days. self.trade_manager.TryLiquidate() ret_t4_t2 = {} for symbol in self.data: if symbol.Value == 'SPY': continue # Store daily data for universe. if self.Securities.ContainsKey(symbol): price = self.Securities[symbol].Price if price != 0: self.data[symbol].append(price) else: # Append latest price as a next one in case there's 0 as price. if len(self.data[symbol]) > 0: last_price = self.data[-1] self.data[symbol].append(last_price) # Data is ready. if len(self.data[symbol]) == self.data[symbol].maxlen: if date_to_lookup in self.earnings_data: # Earnings is in next two day for the symbol. if symbol.Value in self.earnings_data[date_to_lookup]: closes = [x for x in self.data[symbol]] # Calculate t-4 to t-2 return. ret = fk_tools.Return(closes) ret_t4_t2[symbol] = ret # Store return in this month's history. self.ear_actual_quarter.append(ret) # Wait until we have history data for previous three months. if len(self.ear_previous_quarter) != 0: # Sort by EAR. ear_values = self.ear_previous_quarter top_ear_quintile = np.percentile(ear_values, 80) bottom_ear_quintile = np.percentile(ear_values, 20) # Store symbol to set. long = [x[0] for x in ret_t4_t2.items() if x[1] <= bottom_ear_quintile] short = [x[0] for x in ret_t4_t2.items() if x[1] >= top_ear_quintile] # Open new trades. for symbol in long: self.trade_manager.Add(symbol, True) for symbol in short: self.trade_manager.Add(symbol, False) def Selection(self): # There is no earnings data yet. if self.Time.date() < self.first_date: return self.selection_flag = True # Every three months. if self.month % 3 == 0: # Save quarter history. self.ear_previous_quarter = [x for x in self.ear_actual_quarter] self.ear_actual_quarter.clear() self.month += 1 if self.month > 12: self.month = 1
import numpy as np from scipy.optimize import minimize sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK'] def MonthDiff(d1, d2): return (d1.year - d2.year) * 12 + d1.month - d2.month def Return(values): return (values[-1] - values[0]) / values[0] def Volatility(values): values = np.array(values) returns = (values[1:] - values[:-1]) / values[:-1] return np.std(returns) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD")) # Quandl free data class QuandlFutures(PythonQuandl): def __init__(self): self.ValueColumnName = "settle" # Quandl short interest data. class QuandlFINRA_ShortVolume(PythonQuandl): def __init__(self): self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible # Quantpedia data # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaFutures(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config, line, date, isLiveMode): data = QuantpediaFutures() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1) data['settle'] = float(split[1]) data.Value = float(split[1]) return data # NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions. # If there's a place for new trade, it will be managed for time of holding period. class TradeManager(): def __init__(self, algorithm, long_size, short_size, holding_period): self.algorithm = algorithm # algorithm to execute orders in. self.long_size = long_size self.short_size = short_size self.weight = 1 / (self.long_size + self.short_size) self.long_len = 0 self.short_len = 0 # Arrays of ManagedSymbols self.symbols = [] self.holding_period = holding_period # Days of holding. # Add stock symbol object def Add(self, symbol, long_flag): # Open new long trade. managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag) if long_flag: # If there's a place for it. if self.long_len < self.long_size: self.symbols.append(managed_symbol) self.algorithm.SetHoldings(symbol, self.weight) self.long_len += 1 # Open new short trade. else: # If there's a place for it. if self.short_len < self.short_size: self.symbols.append(managed_symbol) self.algorithm.SetHoldings(symbol, - self.weight) self.short_len += 1 # Decrement holding period and liquidate symbols. def TryLiquidate(self): symbols_to_delete = [] for managed_symbol in self.symbols: managed_symbol.days_to_liquidate -= 1 # Liquidate. if managed_symbol.days_to_liquidate == 0: symbols_to_delete.append(managed_symbol) self.algorithm.Liquidate(managed_symbol.symbol) if managed_symbol.long_flag: self.long_len -= 1 else: self.short_len -= 1 # Remove symbols from management. for managed_symbol in symbols_to_delete: self.symbols.remove(managed_symbol) class ManagedSymbol(): def __init__(self, symbol, days_to_liquidate, long_flag): self.symbol = symbol self.days_to_liquidate = days_to_liquidate self.long_flag = long_flag class PortfolioOptimization(object): def __init__(self, df_return, risk_free_rate, num_assets): self.daily_return = df_return self.risk_free_rate = risk_free_rate self.n = num_assets # numbers of risk assets in portfolio self.target_vol = 0.05 def annual_port_return(self, weights): # calculate the annual return of portfolio return np.sum(self.daily_return.mean() * weights) * 252 def annual_port_vol(self, weights): # calculate the annual volatility of portfolio return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights))) def min_func(self, weights): # method 1: maximize sharp ratio return - self.annual_port_return(weights) / self.annual_port_vol(weights) # method 2: maximize the return with target volatility #return - self.annual_port_return(weights) / self.target_vol def opt_portfolio(self): # maximize the sharpe ratio to find the optimal weights cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2)) opt = minimize(self.min_func, # object function np.array(self.n * [1. / self.n]), # initial value method='SLSQP', # optimization method bounds=bnds, # bounds for variables constraints=cons) # constraint conditions opt_weights = opt['x'] return opt_weights