Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 2.008 Tracking Error 0.168 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * import pandas as pd import numpy as np from datetime import time, datetime, timedelta # endregion class CombinedAlgorithm(QCAlgorithm): def Initialize(self): # INITIALIZE self.SetStartDate(2022, 1, 1) # Set Start Date self.SetEndDate(2022, 3, 1) self.SetCash(10000) # Set Strategy Cash self.spy = self.AddEquity('SPY', Resolution.Minute) self.spy.SetDataNormalizationMode(DataNormalizationMode.Raw) self.trigger_week_high = 0 self.trigger_week_low = 0 weeklyConsolidator = TradeBarConsolidator(Calendar.Weekly) weeklyConsolidator.DataConsolidated += self.OnTwoWeekBar self.SubscriptionManager.AddConsolidator("SPY", weeklyConsolidator) self.weekBarWindow = RollingWindow[TradeBar](1) # 2 def OnData(self, data): # VARIABLES pass #self.Log(f'{self.trigger_week_high} previous weeks high ORDER') def OnTwoWeekBar(self, sender, bar): self.Log("OnDataConsolidated called on " + str(self.Time)) self.Log(str(bar.High)) self.weekBarWindow.Add(bar) if not self.weekBarWindow.IsReady: return trigger_week = self.weekBarWindow[0] self.trigger_week_high = trigger_week.High self.trigger_week_low = trigger_week.Low #self.Log(f'{self.trigger_week_high} previous weeks high')