Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.744 Tracking Error 0.162 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# OHLC SymbolData class OHLC_SymbolData(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 4, 21) self.SetEndDate(2022, 4, 20) self.stock = self.AddEquity("SPY", Resolution.Daily).Symbol def OnData(self, data): O = float(SymbolData(self, self.stock).open.Current.Value) H = float(SymbolData(self, self.stock).high.Current.Value) L = float(SymbolData(self, self.stock).low.Current.Value) C = float(SymbolData(self, self.stock).close.Current.Value) self.Plot(self.stock, "Open", O) self.Plot(self.stock, "High", H) self.Plot(self.stock, "Low", L) self.Plot(self.stock, "Close", C) class SymbolData: def __init__(self, algo, symbol): self.open = algo.Identity(symbol, Resolution.Daily, Field.Open) self.high = algo.Identity(symbol, Resolution.Daily, Field.High) self.low = algo.Identity(symbol, Resolution.Daily, Field.Low) self.close = algo.Identity(symbol, Resolution.Daily, Field.Close) history = algo.History(symbol, 2, Resolution.Daily).iloc[-1] self.open.Update(pd.to_datetime(history.name[1]), history.open) self.high.Update(pd.to_datetime(history.name[1]), history.high) self.low.Update(pd.to_datetime(history.name[1]), history.low) self.close.Update(pd.to_datetime(history.name[1]), history.close)