Overall Statistics |
Total Trades 242 Average Win 4.27% Average Loss -1.73% Compounding Annual Return -14.638% Drawdown 54.300% Expectancy -0.185 Net Profit -41.072% Sharpe Ratio -0.421 Probabilistic Sharpe Ratio 0.396% Loss Rate 76% Win Rate 24% Profit-Loss Ratio 2.46 Alpha -0.111 Beta -0.022 Annual Standard Deviation 0.271 Annual Variance 0.074 Information Ratio -0.717 Tracking Error 0.347 Treynor Ratio 5.149 Total Fees $271.04 |
from UniverseSelection import UniverseSelectionModel # from alpha_model import MacdAlphaModel # from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel from Alphas.MacdAlphaModel import MacdAlphaModel from Execution.StandardDeviationExecutionModel import ImmediateExecutionModel class PrototypeV0(QCAlgorithm): def Initialize(self): # Set requested data resolution - minute required for risk management self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw # Set Start Date self.SetStartDate(2017, 2, 15) # Set Strategy Cash self.SetCash(100000) # self.SetBenchmark("TSLA") # Manual univere selection symbols = [ Symbol.Create("TSLA", SecurityType.Equity, Market.USA)] # symbols = [ Symbol.Create("TSLA", SecurityType.Equity, Market.USA),Symbol.Create("TVIX", SecurityType.Equity, Market.USA),Symbol.Create("ADPT", SecurityType.Equity, Market.USA),Symbol.Create("DDOG", SecurityType.Equity, Market.USA),Symbol.Create("APRN", SecurityType.Equity, Market.USA),Symbol.Create("ZM", SecurityType.Equity, Market.USA),Symbol.Create("MRNA", SecurityType.Equity, Market.USA) ] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) # count = 10 # self.SetUniverseSelection(UniverseSelectionModel()) # self.AddAlpha(EmaCrossAlphaModel(50, 200, Resolution.Daily)) self.AddAlpha(MacdAlphaModel(12, 26, 9, MovingAverageType.Exponential, Resolution.Daily)) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel() ) self.SetExecution( ImmediateExecutionModel() ) self.SetRiskManagement(TrailingStopRiskManagementModel(0.05)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)
# universe selection above of stocks going above the SMA from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect.Data.UniverseSelection import * from QuantConnect.Indicators import SimpleMovingAverage from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class UniverseSelectionModel(FundamentalUniverseSelectionModel): def __init__(self, universeCount = 20, universeSettings = None, securityInitializer = None): super().__init__(False, universeSettings, securityInitializer) self.universeCount = universeCount # self.averages = {} # setup state storage in initialize method self.stateData = {} def SelectCoarse(self, algorithm, coarse): for c in coarse: if c.Symbol not in self.stateData: self.stateData[c.Symbol] = SelectionData(c.Symbol, 10) avg = self.stateData[c.Symbol] avg.update(c.EndTime, c.AdjustedPrice, c.DollarVolume) # filter the values of selectionData(sd) above SMA values = [sd for sd in self.stateData.values() if sd.volume > sd.sma.Current.Value and sd.volume_ratio > 0] # sort sd by the largest % jump in volume. values.sort(key=lambda sd: sd.volume_ratio, reverse=True) # return the top 10 symbol objects return [ sd.symbol for sd in values[:10] ] # class used to improve readability of the coarse selection function class SelectionData(object): def __init__(self, symbol, period): self.symbol = symbol self.volume = 0 self.volume_ratio = 0 self.sma = SimpleMovingAverage(period) def update(self, time, price, volume): self.volume = volume if self.sma.Update(time, volume): # get ratio of this volume bar vs previous 10 before it. self.volume_ratio = volume / self.sma.Current.Value
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * class MacdAlphaModel(AlphaModel): '''Defines a custom alpha model that uses MACD crossovers. The MACD signal line is used to generate up/down insights if it's stronger than the bounce threshold. If the MACD signal is within the bounce threshold then a flat price insight is returned.''' def __init__(self, fastPeriod = 12, slowPeriod = 26, signalPeriod = 9, movingAverageType = MovingAverageType.Exponential, resolution = Resolution.Daily): ''' Initializes a new instance of the MacdAlphaModel class Args: fastPeriod: The MACD fast period slowPeriod: The MACD slow period</param> signalPeriod: The smoothing period for the MACD signal movingAverageType: The type of moving average to use in the MACD''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.signalPeriod = signalPeriod self.movingAverageType = movingAverageType self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.bounceThresholdPercent = 0.01 self.symbolData = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) movingAverageTypeString = Extensions.GetEnumString(movingAverageType, MovingAverageType) self.Name = '{}({},{},{},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, signalPeriod, movingAverageTypeString, resolutionString) def Update(self, algorithm, data): ''' Determines an insight for each security based on it's current MACD signal Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for key, sd in self.symbolData.items(): if sd.Security.Price == 0: continue direction = InsightDirection.Flat normalized_signal = sd.MACD.Signal.Current.Value / sd.Security.Price if normalized_signal > self.bounceThresholdPercent: direction = InsightDirection.Up elif normalized_signal < -self.bounceThresholdPercent: direction = InsightDirection.Down # ignore signal for same direction as previous signal if direction == sd.PreviousDirection: continue insight = Insight.Price(sd.Security.Symbol, self.insightPeriod, direction) sd.PreviousDirection = insight.Direction insights.append(insight) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed. This initializes the MACD for each added security and cleans up the indicator for each removed security. Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.fastPeriod, self.slowPeriod, self.signalPeriod, self.movingAverageType, self.resolution) for removed in changes.RemovedSecurities: data = self.symbolData.pop(removed.Symbol, None) if data is not None: # clean up our consolidator algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) class SymbolData: def __init__(self, algorithm, security, fastPeriod, slowPeriod, signalPeriod, movingAverageType, resolution): self.Security = security self.MACD = MovingAverageConvergenceDivergence(fastPeriod, slowPeriod, signalPeriod, movingAverageType) self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.MACD, self.Consolidator) self.PreviousDirection = None