Overall Statistics |
Total Trades 199 Average Win 5.56% Average Loss -1.56% Compounding Annual Return 26.399% Drawdown 19.300% Expectancy 2.138 Net Profit 1988.664% Sharpe Ratio 1.408 Probabilistic Sharpe Ratio 85.732% Loss Rate 31% Win Rate 69% Profit-Loss Ratio 3.57 Alpha 0.222 Beta 0.068 Annual Standard Deviation 0.162 Annual Variance 0.026 Information Ratio 0.551 Tracking Error 0.238 Treynor Ratio 3.342 Total Fees $6267.71 |
""" DUAL MOMENTUM IN OUT with static parameters v2.2 by Vladimir inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang and T Smith. """ import numpy as np class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) # self.SetEndDate(2020, 11, 27) self.cap = 100000 self.STK1 = self.AddEquity('QQQ', Resolution.Minute).Symbol self.STK2 = self.AddEquity('FDN', Resolution.Minute).Symbol self.BND1 = self.AddEquity('TLT', Resolution.Minute).Symbol self.BND2 = self.AddEquity('TLH', Resolution.Minute).Symbol self.ASSETS = [self.STK1, self.STK2, self.BND1, self.BND2] self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol self.PAIRS = [self.XLI, self.XLU, self.SLV, self.GLD] self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.RETURN = 85 self.WAIT_DAYS = 17 self.RET = 126 self.EXCL = 5 self.selected_bond = self.BND1 self.selected_stock = self.STK1 self.bull = 1 self.count = 0 self.outday = 0 self.spy = [] self.wt = {} self.real_wt = {} self.SetWarmUp(self.RET) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100), self.calculate_signal) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.trade_out) self.Schedule.On(self.DateRules.WeekEnd(), self.TimeRules.AfterMarketOpen('SPY', 120), self.trade_in) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose('SPY', 0), self.record_vars) def returns(self, symbol, period, excl): prices = self.History(symbol, period + excl, Resolution.Daily).close return prices[-excl] / prices[0] def calculate_signal(self): P = self.History(self.PAIRS, self.RETURN + 1, Resolution.Daily)['close'].unstack(level = 0).dropna() if (len(P.columns) < 2): return diff_iu = (P[self.XLI].iloc[-1] / P[self.XLI].iloc[0]) - (P[self.XLU].iloc[-1] / P[self.XLU].iloc[0]) diff_sg = (P[self.SLV].iloc[-1] / P[self.SLV].iloc[0]) - (P[self.GLD].iloc[-1] / P[self.GLD].iloc[0]) exit = (diff_iu < 0 and diff_sg < 0) if exit: self.bull = 0; self.outday = self.count; if (self.count >= self.outday + self.WAIT_DAYS): self.bull = 1 self.count += 1 if self.returns(self.BND1, self.RET, self.EXCL) < self.returns(self.BND2, self.RET, self.EXCL): self.selected_bond = self.BND2 elif self.returns(self.BND1, self.RET, self.EXCL) > self.returns(self.BND2, self.RET, self.EXCL): self.selected_bond = self.BND1 if self.returns(self.STK1, self.RET, self.EXCL) < self.returns(self.STK2, self.RET, self.EXCL): self.selected_stock = self.STK2 elif self.returns(self.STK1, self.RET, self.EXCL) > self.returns(self.STK2, self.RET, self.EXCL): self.selected_stock = self.STK1 def trade_out(self): if not self.bull: for sec in self.ASSETS: self.wt[sec] = 0.99 if sec is self.selected_bond else 0 if sec is self.selected_bond else 0 self.trade() def trade_in(self): if self.bull: for sec in self.ASSETS: self.wt[sec] = 0.99 if sec is self.selected_stock else 0 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def record_vars(self): hist = self.History([self.MKT], 2, Resolution.Daily)['close'].unstack(level= 0).dropna() self.spy.append(hist[self.MKT].iloc[-1]) spy_perf = self.spy[-1] / self.spy[0] * self.cap self.Plot("Strategy Equity", "SPY", spy_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))