Overall Statistics |
Total Trades 152 Average Win 0.14% Average Loss -0.17% Compounding Annual Return -1.693% Drawdown 3.100% Expectancy -0.043 Net Profit -0.591% Sharpe Ratio -0.384 Probabilistic Sharpe Ratio 18.075% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 0.80 Alpha -0.012 Beta 0.007 Annual Standard Deviation 0.03 Annual Variance 0.001 Information Ratio -0.841 Tracking Error 0.132 Treynor Ratio -1.648 Total Fees $0.00 |
from enum import Enum from datetime import timedelta import numpy as np class BasicTemplateFrameworkAlgorithm(QCAlgorithm): '''Basic template framework algorithm uses framework components to define the algorithm.''' def Initialize(self): ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # Set requested data resolution self.UniverseSettings.Resolution = Resolution.Hour self.SetStartDate(2019,6,7) #Set Start Date self.SetEndDate(2019,10,11) #Set End Date self.SetCash(100000) #Set Strategy Cash symbols = [ Symbol.Create("EURUSD", SecurityType.Forex, Market.FXCM) ] # set algorithm framework models self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) self.SetAlpha(RsiAlphaModel(period = 7,lower = 25,upper = 75,resolution = Resolution.Hour)) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(Resolution.Daily)) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01)) PricePlot = Chart('Trade Plot') PricePlot.AddSeries(Series('Price', SeriesType.Line, 0)) self.AddChart(PricePlot) RSIPlot = Chart('RSI') RSIPlot.AddSeries(Series('rsi', SeriesType.Line, 0)) self.AddChart(RSIPlot) StatePlot = Chart('State') StatePlot.AddSeries(Series('state', SeriesType.Line, 0)) self.AddChart(StatePlot) def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: self.Debug("Purchased Stock: {0}".format(orderEvent.Symbol)) class RsiAlphaModel(AlphaModel): '''Uses Wilder's RSI to create insights. Using default settings, a cross over below 30 or above 70 will trigger a new insight.''' def __init__(self,period = 14,lower = 25,upper = 75,resolution = Resolution.Daily): '''Initializes a new instance of the RsiAlphaModel class Args: period: The RSI indicator period''' self.period = period self.lower = lower self.upper = upper self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.symbolDataBySymbol ={} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): rsi = symbolData.RSI previous_state = symbolData.State state = self.GetState(rsi, previous_state) if state != previous_state and rsi.IsReady: if state == State.CrossOverAbove: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up)) if state == State.CrossOverBelow: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down)) symbolData.State = state algorithm.Plot('Trade Plot', 'Price' , algorithm.Securities[symbol].Price) algorithm.Plot('RSI' , 'rsi' , rsi.Current.Value) algorithm.Plot('State' , 'state' , self.GetState(rsi, previous_state).value) algorithm.Log(' Price:'+str(algorithm.Securities[symbol].Price)+' rsi:'+str(rsi.Current.Value)+' state:'+str(self.GetState(rsi, previous_state).value)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Cleans out old security data and initializes the RSI for any newly added securities. Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities symbols = [ x.Symbol for x in changes.RemovedSecurities ] if len(symbols) > 0: for subscription in algorithm.SubscriptionManager.Subscriptions: if subscription.Symbol in symbols: self.symbolDataBySymbol.pop(subscription.Symbol, None) subscription.Consolidators.Clear() # initialize data for added securities addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol] if len(addedSymbols) == 0: return history = algorithm.History(addedSymbols, self.period, self.resolution) for symbol in addedSymbols: rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution) if not history.empty: ticker = SymbolCache.GetTicker(symbol) if ticker not in history.index.levels[0]: Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.') continue for tuple in history.loc[ticker].itertuples(): rsi.Update(tuple.Index, tuple.close) self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi) def GetState(self, rsi, previous): ''' Determines the new state. This is basically cross-over detection logic that includes considerations for bouncing using the configured bounce tolerance.''' if rsi.Current.Value > self.upper: return State.TrippedHigh if rsi.Current.Value < self.lower: return State.TrippedLow if previous == State.TrippedLow: if rsi.Current.Value > self.lower:# and rsi.Current.Value < self.lower+5 return State.CrossOverAbove if previous == State.TrippedHigh: if rsi.Current.Value < self.upper:#and rsi.Current.Value > self.upper-5 return State.CrossOverBelow if previous == State.CrossOverBelow or previous == State.CrossOverAbove: return State.Middle return previous class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, rsi): self.Symbol = symbol self.RSI = rsi self.State = State.Middle class State(Enum): '''Defines the state. This is used to prevent signal spamming and aid in bounce detection.''' TrippedLow = -2 CrossOverAbove = -1 CrossOverBelow = 1 TrippedHigh = 2 Middle = 0