Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return -4.347% Drawdown 0.100% Expectancy 0 Net Profit -0.069% Sharpe Ratio -5.25 Probabilistic Sharpe Ratio 24.652% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.023 Beta 0.026 Annual Standard Deviation 0.008 Annual Variance 0 Information Ratio 2.32 Tracking Error 0.305 Treynor Ratio -1.65 Total Fees $1.00 Estimated Strategy Capacity $1000000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
class EmotionalRedLlama(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 10, 20) self.SetEndDate(2018, 10, 25) self.SetCash(100000) self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol self.limOrder = None self.Schedule.On(self.DateRules.EveryDay("SPY"), \ self.TimeRules.BeforeMarketClose("SPY", 10), \ self.EveryDayBeforeMarketClose) def EveryDayBeforeMarketClose(self): if self.limOrder.Status != OrderStatus.Filled: response = self.limOrder.Cancel("Canceled SPY Trade") if response.IsSuccess: self.Debug("Order successfully canceled") def OnData(self, data): ''' OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # Check if we're not invested and then put portfolio 100% in the SPY ETF. if not self.Portfolio.Invested: self.MarketOrder(self.spy,10) price = data.Bars[self.spy].Close self.limOrder = self.LimitOrder(self.spy,-10,price*1.5)