Overall Statistics |
Total Trades 61 Average Win 5.88% Average Loss -0.66% Compounding Annual Return 64.861% Drawdown 36.500% Expectancy 7.339 Net Profit 299.177% Sharpe Ratio 1.456 Probabilistic Sharpe Ratio 63.859% Loss Rate 16% Win Rate 84% Profit-Loss Ratio 8.88 Alpha 0.487 Beta 0.175 Annual Standard Deviation 0.342 Annual Variance 0.117 Information Ratio 1.137 Tracking Error 0.381 Treynor Ratio 2.852 Total Fees $409.21 Estimated Strategy Capacity $1100000.00 Lowest Capacity Asset DBC TFVSB03UY0DH |
#region imports from AlgorithmImports import * #endregion #See: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4166845 import pandas as pd import numpy as np class BoldAssetAllocation(QCAlgorithm): def Initialize(self): self.SetStartDate(2020,1,1) # Set Start Date self.start_cash = 100000 self.SetCash(self.start_cash) # Set Strategy Cash self.SetBenchmark('SPY') # Algo Parameters self.prds = [1,3,6,12] #periods self.prdwts = np.array([12,6,2,1]) #period weighting #B = no. of canaries which need to go bad, TO = no. of offensive assets, TD = number of defensive assets self.LO, self.LD, self.LP, self.B, self.TO, self.TD = [12,12,0,1,1,2] self.hprd = max(self.prds+[self.LO,self.LD])*21+50 # Assets self.canary = ['SPY','EFA','EEM','BND'] self.offensive = ['TQQQ','EFA','EEM','BND', 'SQQQ'] self.defensive = ['BIL','BND','DBC','IEF','LQD','TIP','TLT', 'SQQQ'] self.safe = 'BIL' # repeat safe asset so it can be selected multiple times self.alldefensive = self.defensive + [self.safe] * max(0,self.TD - sum([1*(e==self.safe) for e in self.defensive])) self.eqs = list(dict.fromkeys(self.canary+self.offensive+self.alldefensive)) for eq in self.eqs: self.AddEquity(eq,Resolution.Minute) # monthly rebalance self.Schedule.On(self.DateRules.MonthStart(self.canary[0]),self.TimeRules.AfterMarketOpen(self.canary[0],30),self.rebal) self.Trade = True def rebal(self): self.Trade = True def OnData(self, data): if self.Trade: # Get price data and trading weights h = self.History(self.eqs,self.hprd,Resolution.Daily)['close'].unstack(level=0) wts = self.trade_wts(h) # trade port_tgt = [PortfolioTarget(x,y) for x,y in zip(wts.index,wts.values)] self.SetHoldings(port_tgt) self.Trade = False def trade_wts(self,hist): # initialize wts Series wts = pd.Series(0,index=hist.columns) # end of month values h_eom = (hist.loc[hist.groupby(hist.index.to_period('M')).apply(lambda x: x.index.max())] .iloc[:-1,:]) # ===================================== # check if canary universe is triggered # ===================================== # build dataframe of momentum values mom = h_eom.iloc[-1,:].div(h_eom.iloc[[-p-1 for p in self.prds],:],axis=0)-1 mom = mom.loc[:,self.canary].T # Determine number of canary securities with negative weighted momentum n_canary = np.sum(np.sum(mom.values*self.prdwts,axis=1)<0) # % equity offensive pct_in = 1-min(1,n_canary/self.B) # ===================================== # get weights for offensive and defensive universes # ===================================== # determine weights of offensive universe if pct_in > 0: # price / SMA mom_in = h_eom.iloc[-1,:].div(h_eom.iloc[[-t for t in range(1,self.LO+1)]].mean(axis=0),axis=0) mom_in = mom_in.loc[self.offensive].sort_values(ascending=False) # equal weightings to top relative momentum securities in_wts = pd.Series(pct_in/self.TO,index=mom_in.index[:self.TO]) wts = pd.concat([wts,in_wts]) # determine weights of defensive universe if pct_in < 1: # price / SMA mom_out = h_eom.iloc[-1,:].div(h_eom.iloc[[-t for t in range(1,self.LD+1)]].mean(axis=0),axis=0) mom_out = mom_out.loc[self.alldefensive].sort_values(ascending=False) # equal weightings to top relative momentum securities out_wts = pd.Series((1-pct_in)/self.TD,index=mom_out.index[:self.TD]) wts = pd.concat([wts,out_wts]) wts = wts.groupby(wts.index).sum() return wts