Overall Statistics |
Total Orders 14501 Average Win 0.40% Average Loss -0.18% Compounding Annual Return 11.355% Drawdown 10.900% Expectancy 0.141 Start Equity 100000 End Equity 595436.79 Net Profit 495.437% Sharpe Ratio 0.782 Sortino Ratio 1.383 Probabilistic Sharpe Ratio 36.643% Loss Rate 65% Win Rate 35% Profit-Loss Ratio 2.22 Alpha 0.068 Beta -0.04 Annual Standard Deviation 0.083 Annual Variance 0.007 Information Ratio -0.021 Tracking Error 0.19 Treynor Ratio -1.639 Total Fees $114405.99 Estimated Strategy Capacity $6900000.00 Lowest Capacity Asset GBTC 2T Portfolio Turnover 209.31% |
from AlgorithmImports import * import numpy as np from collections import deque class HKUSTIntradayMomentum(QCAlgorithm): def initialize(self): self.set_start_date(2008, 1, 1) self.set_cash(100000) symbol_list = [ 'SPY','QQQ','GBTC', 'GLD'] # Feed in historical data self.set_warm_up(timedelta(100)) for symbol in symbol_list: ticker = self.add_equity( symbol, Resolution.MINUTE, data_normalization_mode=DataNormalizationMode.TOTAL_RETURN ) ticker.margin_model = PatternDayTradingMarginModel() ticker._vwap = self.vwap(ticker.symbol) ticker._roc = self.rocp(ticker.symbol, 1, Resolution.DAILY) ticker._vol = IndicatorExtensions.of(StandardDeviation(14), ticker._roc) ticker._deviation = AbsoluteDeviation('deviation', 63) ticker._previous_date = None ticker._open_price = None ticker._previous_close = None ticker._last_trade_date = None ticker._bars = deque(maxlen=2) self.consolidate(ticker.symbol, timedelta(minutes=30), self.consolidate_handler) self.schedule.on( self.date_rules.every_day(symbol_list[0]), self.time_rules.before_market_close(symbol_list[0], 1), self.end_of_day ) def consolidate_handler(self, bar): symbol = bar.symbol security = self.securities[symbol] current_date = bar.end_time.date() security._bars.append(bar) if current_date != security._previous_date: security._previous_date = current_date security._open_price = bar.open security._previous_close = security._bars[-2].close if len(security._bars) == 2 else None security._deviation.update(bar) if not security._vol.is_ready or not security._previous_close or not security._deviation.ready: return upper_bound = (max(security._open_price, security._previous_close) * (1 + security._deviation.value)) lower_bound = (min(security._open_price, security._previous_close) * (1 - security._deviation.value)) vwap_price = security._vwap.current.value long_stop_price = np.max([vwap_price, upper_bound]) short_stop_price = np.min([vwap_price, lower_bound]) is_up_trend = bar.close > security._vwap.current.value is_down_trend = bar.close < security._vwap.current.value is_long = self.portfolio[symbol].is_long is_short = self.portfolio[symbol].is_short is_long_stopped_out = is_long and bar.close <= long_stop_price is_short_stopped_out = is_short and bar.close >= short_stop_price is_not_last_trade_date = security._last_trade_date != current_date vol_target = 0.04 max_leverage = 4 spy_vol = security._vol.current.value / 100 leverage = np.min([max_leverage, vol_target / spy_vol]) * 1 / len(self.securities.keys()) #make sure orders are sent after warmup period if self.is_warming_up: return if is_long_stopped_out or is_short_stopped_out: self.liquidate(symbol) if bar.close > upper_bound and not is_long and is_up_trend and is_not_last_trade_date: self.set_holdings(symbol, 1 * leverage) security._last_trade_date = current_date elif bar.close < lower_bound and not is_short and is_down_trend and is_not_last_trade_date: self.set_holdings(symbol, -1 * leverage) security._last_trade_date = current_date def end_of_day(self): self.liquidate() class AbsoluteDeviation(PythonIndicator): def __init__(self, name, period): super().__init__() self.name = name self.period = period self.data = {} self.ready = False self.previous_data = None self.open_price = None def update(self, data: BaseData): current_data = data.end_time.date() if current_data != self.previous_data: self.previous_data = current_data self.open_price = data.open current_time = data.end_time.time() if current_time not in self.data: self.data[current_time] = deque(maxlen=self.period) self.data[current_time].append( np.abs(data.close / self.open_price - 1) ) if len(self.data[current_time]) == self.period: self.ready = True self.value = np.mean(self.data[current_time]) return len(self.data[current_time]) == self.period