Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 102.100% Expectancy 0 Net Profit -114.247% Sharpe Ratio 369.535 Probabilistic Sharpe Ratio 51.278% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 2558.096 Beta 22.038 Annual Standard Deviation 6.923 Annual Variance 47.926 Information Ratio 376.958 Tracking Error 6.786 Treynor Ratio 116.083 Total Fees $123.50 Estimated Strategy Capacity $60000000.00 Lowest Capacity Asset CL Y0AGGZXGV2KH |
# region imports from AlgorithmImports import * # endregion class MuscularFluorescentOrangeGorilla(QCAlgorithm): def Initialize(self): # Set Start Date self.SetStartDate(2022, 6, 22) # Set Strategy Cash self.SetCash(100000) self.SetSecurityInitializer(self.CustomSecurityInitializer) # Add future future = self.AddFuture(Futures.Energies.CrudeOilWTI) future.SetFilter(0, 180) self.future_symbol = future.Symbol def CustomSecurityInitializer(self, security): if security.Type == SecurityType.Future: security.MarginModel = MyBuyingPowerModel() # your custom model def OnData(self, data: Slice): # If not invested if not self.Portfolio.Invested: # Buy chain = data.FuturesChains.get(self.future_symbol) if chain: for contract in chain: self.MarketOrder(contract.Symbol, 50) break class MyBuyingPowerModel(BuyingPowerModel): def __init__(self, leverage = 100): super().__init__(leverage) def SetLeverage(self, security: Security, leverage: float) -> None: super().SetLeverage(security, leverage)