Created with Highcharts 12.1.2EquityJul 2023Sep 2023Nov 2023Jan 2024Mar 2024May 2024Jul 2024Sep 2024Nov 2024Jan 2025Mar 2025May 202502M4M-20-1000250500-0.500.50500k1,000k0100G200G90100110
Overall Statistics
Total Orders
53828
Average Win
0.09%
Average Loss
-0.10%
Compounding Annual Return
72.336%
Drawdown
22.400%
Expectancy
0.039
Start Equity
1000000.00
End Equity
2635996.60
Net Profit
163.600%
Sharpe Ratio
2.061
Sortino Ratio
2.45
Probabilistic Sharpe Ratio
92.470%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
0.94
Alpha
0.437
Beta
-0.061
Annual Standard Deviation
0.211
Annual Variance
0.044
Information Ratio
1.509
Tracking Error
0.254
Treynor Ratio
-7.123
Total Fees
$0.00
Estimated Strategy Capacity
$290000.00
Lowest Capacity Asset
BTCUSDT 18N
Portfolio Turnover
8109.23%
#region imports
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Globalization;
using System.Linq;
using System.Text;
using Newtonsoft.Json;
using QuantConnect;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm.Framework;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Portfolio.SignalExports;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Algorithm.Selection;
using QuantConnect.Api;
using QuantConnect.Benchmarks;
using QuantConnect.Brokerages;
using QuantConnect.Commands;
using QuantConnect.Configuration;
using QuantConnect.Data;
using QuantConnect.Data.Auxiliary;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Custom;
using QuantConnect.Data.Custom.IconicTypes;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.Shortable;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.DataSource;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Notifications;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
using QuantConnect.Orders.Fills;
using QuantConnect.Orders.OptionExercise;
using QuantConnect.Orders.Slippage;
using QuantConnect.Orders.TimeInForces;
using QuantConnect.Parameters;
using QuantConnect.Python;
using QuantConnect.Scheduling;
using QuantConnect.Securities;
using QuantConnect.Securities.Crypto;
using QuantConnect.Securities.CryptoFuture;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities.Forex;
using QuantConnect.Securities.Future;
using QuantConnect.Securities.IndexOption;
using QuantConnect.Securities.Interfaces;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Positions;
using QuantConnect.Securities.Volatility;
using QuantConnect.Statistics;
using QuantConnect.Storage;
using QuantConnect.Util;
using Calendar = QuantConnect.Data.Consolidators.Calendar;
using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm;
using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm;
#endregion

namespace QuantConnect.Algorithm.CSharp
{

    public class CryptoExampleStrategyPublic : QCAlgorithm
    {
        public static string ModelParamsFileName = "baseline_model_params.json";
        public static string ThresholdArrayFileName = "baseline_threshold_array.json";

        public class ModelParams
        {
            [JsonProperty("feature_cols")]
            public string[] FeatureCols { get; set; }

            [JsonProperty("coefficients")]
            public decimal[] Coefficients { get; set; }

            [JsonProperty("intercept")]
            public decimal Intercept { get; set; }

            [JsonProperty("center")]
            public decimal[] Center { get; set; }

            [JsonProperty("scale")]
            public decimal[] Scale { get; set; }
        }

        // Ring buffer for prediction history
        private class RingBuffer<T>
        {
            private T[] _buffer;
            private DateTime[] _timestamps;
            private int _size;
            private int _currentIndex;
            private int _count;

            public RingBuffer(int size)
            {
                _size = size;
                _buffer = new T[size];
                _timestamps = new DateTime[size];
                _currentIndex = 0;
                _count = 0;
            }

            public void Add(DateTime timestamp, T item)
            {
                _timestamps[_currentIndex] = timestamp;
                _buffer[_currentIndex] = item;
                _currentIndex = (_currentIndex + 1) % _size;
                if (_count < _size)
                    _count++;
            }

            public int Count => _count;

            public T GetByIndex(int index)
            {
                if (index < 0 || index >= _count)
                    throw new IndexOutOfRangeException();

                int actualIndex = (_currentIndex - _count + index + _size) % _size;
                return _buffer[actualIndex];
            }

            public DateTime GetTimestampByIndex(int index)
            {
                if (index < 0 || index >= _count)
                    throw new IndexOutOfRangeException();

                int actualIndex = (_currentIndex - _count + index + _size) % _size;
                return _timestamps[actualIndex];
            }

            public T GetLatest()
            {
                if (_count == 0)
                    throw new InvalidOperationException("Buffer is empty");

                int index = (_currentIndex - 1 + _size) % _size;
                return _buffer[index];
            }

            public DateTime GetLatestTimestamp()
            {
                if (_count == 0)
                    throw new InvalidOperationException("Buffer is empty");

                int index = (_currentIndex - 1 + _size) % _size;
                return _timestamps[index];
            }

            public List<T> GetItems()
            {
                List<T> result = new List<T>(_count);
                for (int i = 0; i < _count; i++)
                {
                    int index = (_currentIndex - _count + i + _size) % _size;
                    result.Add(_buffer[index]);
                }
                return result;
            }

            public List<KeyValuePair<DateTime, T>> GetAllWithTimestamps()
            {
                List<KeyValuePair<DateTime, T>> result = new List<KeyValuePair<DateTime, T>>(
                    _count
                );
                for (int i = 0; i < _count; i++)
                {
                    int index = (_currentIndex - _count + i + _size) % _size;
                    result.Add(new KeyValuePair<DateTime, T>(_timestamps[index], _buffer[index]));
                }
                return result;
            }

            public List<T> GetItemsInTimeRange(DateTime startTime, DateTime endTime)
            {
                List<T> result = new List<T>();
                for (int i = 0; i < _count; i++)
                {
                    int index = (_currentIndex - _count + i + _size) % _size;
                    if (_timestamps[index] >= startTime && _timestamps[index] <= endTime)
                    {
                        result.Add(_buffer[index]);
                    }
                }
                return result;
            }
        }

        // Prediction record to track accuracy
        private class PredictionRecord
        {
            public decimal Probability { get; set; }
            public decimal EntryPrice { get; set; }
            public bool? IsCorrect { get; set; } // null means not yet determined
        }

        private enum ModelState
        {
            Normal,
            Reversed,
            NotReliable,
        }

        private Symbol _btcusdt;
        private ModelParams _modelParams;
        private decimal[] _thresholdArr;
        private bool _modelLoaded = false;

        private decimal _positionSize = 0.98m;
        private decimal _leverage = 1.0m;

        private decimal _enterPositionThreshold = 0.04m;
        private decimal _exitPositionThreshold = 0.60m;

        private decimal _takeProfitTarget = 0.008m;
        private decimal _stopLossLevel = 5m;
        
        // Min accuracy threshold for normal operation
        private decimal _normalThreshold = 0.40m; // TODO
        // Max accuracy threshold for reversed operation
        private decimal _reversedThreshold = 0.35m; // TODO
        // Min number of predictions needed to evaluate accuracy
        private int _minPredictionsForAccuracy = 30; // half in 30, half in 60, // TODO
        
        private ModelState _currentModelState = ModelState.Normal;

        private DateTime _positionEntryTime;
        private bool _inLongPosition = false;
        private bool _inShortPosition = false;
        private decimal _entryPrice = 0m;
        private int _positionHoldingWindow = 10;
        private int _earlyProfitMinHoldingTime = 1;

        private RingBuffer<decimal> _predictionHistory;
        private RingBuffer<decimal> _priceHistory;
        private RingBuffer<PredictionRecord> _predictionRecords; // Records for accuracy tracking
        private int _maxPredictionHistory => 60 + _positionHoldingWindow + _earlyProfitMinHoldingTime; // TODO

        private List<TradeRecord> _tradeRecords = new List<TradeRecord>();

        private class TradeRecord
        {
            public DateTime EntryTime { get; set; }
            public DateTime ExitTime { get; set; }
            public decimal EntryPrice { get; set; }
            public decimal ExitPrice { get; set; }
            public string Direction { get; set; }
            public decimal PnL { get; set; }
            public string ExitReason { get; set; }
            public ModelState ModelStateAtEntry { get; set; }
            public decimal OriginalPrediction { get; set; }
            public decimal AdjustedPrediction { get; set; }
        }

        public override void Initialize()
        {
            // SetStartDate(2023, 1, 1);
            SetStartDate(2023, 7, 1);
            // SetStartDate(2023, 10, 1);
            // SetStartDate(2024, 8, 1);
            // SetEndDate(2024, 6, 1);
            // SetEndDate(2024, 9, 1);
            // SetEndDate(2023, 7, 1);
            SetEndDate(DateTime.Now);
            
            // SetAccountCurrency("USDT", 1_000_000);
            SetAccountCurrency("USD", 1_000_000);
            // SetCash("USDT", 0);
            SetBrokerageModel(new DefaultBrokerageModel());
            SetTimeZone(TimeZones.Utc);

            // We use 2x leverage for quantconnect live paper trading for the high sharpe ratio
            if (LiveMode)
            {
                _positionSize = 0.98m;
                _leverage = 2.0m;
            }

            var security = AddCrypto(
                "BTCUSDT",
                Resolution.Minute,
                LiveMode ? null: Market.Binance,
                fillForward: true,
                leverage: _leverage
            );
            // security.SetFeeModel(new ConstantFeeModel(0.0m));
            _btcusdt = security.Symbol;
            _predictionHistory = new RingBuffer<decimal>(_maxPredictionHistory);
            _priceHistory = new RingBuffer<decimal>(_maxPredictionHistory + _positionHoldingWindow + _earlyProfitMinHoldingTime);
            _predictionRecords = new RingBuffer<PredictionRecord>(_maxPredictionHistory);

            // Reload model every 00:00 UTC
            // Schedule.On(
            //     DateRules.EveryDay("BTCUSDT"),
            //     TimeRules.At(new TimeSpan(00, 00, 00)),
            //     LoadModelParameters
            // );
            // Reset state machine at start of each day
            // Schedule.On(
            //     DateRules.EveryDay("BTCUSDT"),
            //     TimeRules.At(00, 00, 01), // Just after midnight
            //     ResetStateMachine
            // );
            // Liquidate at the start of each day
            // Schedule.On(
            //     DateRules.EveryDay("BTCUSDT"),
            //     TimeRules.At(00, 00, 05), // Just after midnight
            //     CheckAndLiquidateForNonTestDays
            // );

            // Schedule evaluation of past predictions
            Schedule.On(
                DateRules.EveryDay("BTCUSDT"),
                TimeRules.Every(TimeSpan.FromMinutes(1)),
                EvaluatePastPredictions
            );

            ResetStateMachine();
            LoadModelParameters();
            LoadThresholdArray();
        }

        private void ResetStateMachine()
        {
            if (_currentModelState != ModelState.Normal)
            {
                Log(
                    $"Resetting state machine. Previous state: {_currentModelState}"
                );
            }

            _currentModelState = ModelState.Normal;
            
            Log(
                $"State machine reset for {Time.Date:yyyy-MM-dd}. Now in {_currentModelState} state."
            );
        }
        
        private void EvaluatePastPredictions()
        {
            var predictions = _predictionRecords.GetAllWithTimestamps();
            if (predictions.Count == 0) return;

            // Look through past predictions that need evaluation
            foreach (var pair in predictions)
            {
                DateTime predictionTime = pair.Key;
                PredictionRecord record = pair.Value;

                // Skip already evaluated predictions
                if (record.IsCorrect.HasValue) continue;

                // Calculate the evaluation window end
                DateTime evalStartTime = predictionTime.AddMinutes(_earlyProfitMinHoldingTime);
                DateTime evalEndTime = predictionTime.AddMinutes(_earlyProfitMinHoldingTime + _positionHoldingWindow);

                // If we're past the evaluation window, check if prediction was correct
                if (Time >= evalEndTime)
                {
                    // Get prices from our price history buffer
                    var pricesInWindow = _priceHistory.GetItemsInTimeRange(evalStartTime, evalEndTime);
                    
                    if (pricesInWindow.Count > 0)
                    {
                        // Calculate average price in the window
                        decimal avgPrice = pricesInWindow.Average();
                        
                        // Determine if prediction was correct
                        bool priceWentUp = avgPrice > record.EntryPrice;
                        bool predictedUp = record.Probability > 0.5m;
                        
                        // Set prediction correctness
                        record.IsCorrect = (predictedUp == priceWentUp);
                        
                        Log($"Evaluated prediction from {predictionTime}: predicted {(predictedUp ? "UP" : "DOWN")}, " +
                            $"actual {(priceWentUp ? "UP" : "DOWN")}, correct: {record.IsCorrect}");
                    }
                    else
                    {
                        Log($"Warning: No price data found for window {evalStartTime} to {evalEndTime}. Cannot evaluate prediction from {predictionTime}.");
                    }
                }
            }
            
            // Update model state based on prediction accuracy
            UpdateModelState();
        }
        
        private void UpdateModelState()
        {
            var predictions = _predictionRecords.GetItems();
            
            // Only evaluated predictions
            var evaluatedPredictions = predictions.Where(p => p.IsCorrect.HasValue).ToList();
            
            // Need minimum number of predictions to make a determination
            if (evaluatedPredictions.Count < _minPredictionsForAccuracy)
            {
                Log($"Not enough evaluated predictions ({evaluatedPredictions.Count}/{_minPredictionsForAccuracy}) to determine accuracy");
                return;
            }
            
            // Calculate accuracy
            int correctCount = evaluatedPredictions.Count(p => p.IsCorrect.Value);
            decimal accuracy = (decimal)correctCount / evaluatedPredictions.Count;
            
            ModelState previousState = _currentModelState;
            
            // Update state based on accuracy
            if (accuracy >= _normalThreshold)
            {
                _currentModelState = ModelState.Normal;
            }
            else if (accuracy <= _reversedThreshold)
            {
                _currentModelState = ModelState.Reversed;
            }
            else
            {
                _currentModelState = ModelState.NotReliable;
            }
            
            if (previousState != _currentModelState)
            {
                Log($"State transition: {previousState} -> {_currentModelState} based on prediction accuracy of {accuracy:P2} " +
                    $"(correct: {correctCount}/{evaluatedPredictions.Count})");
            }
        }
        
        public override void OnData(Slice slice)
        {
            Log($"[OnData] - {Time} - Before Check {_btcusdt}, _modelLoaded {_modelLoaded}");
            if (!slice.Bars.ContainsKey(_btcusdt) || !_modelLoaded)
                return;
            Log($"[OnData] - {Time} - After Check: {slice.Bars[_btcusdt]}");

            var bar = slice.Bars[_btcusdt];
            _priceHistory.Add(Time, bar.Close);

            decimal[] features = CalculateFeatures(bar);
            decimal originalPredictProb = PredictProbability(features);
            decimal adjustedPredictProb = AdjustPredictionByState(originalPredictProb);
            decimal percentile = GetProbabilityPercentile(adjustedPredictProb);
            _predictionHistory.Add(Time, originalPredictProb);
            
            // Add to prediction records for later accuracy evaluation
            _predictionRecords.Add(Time, new PredictionRecord 
            { 
                Probability = originalPredictProb, 
                EntryPrice = bar.Close,
                IsCorrect = null // Will be evaluated later
            });

            // Calculate current prediction accuracy
            string accuracyStr = "N/A";
            var evaluatedPredictions = _predictionRecords.GetItems().Where(p => p.IsCorrect.HasValue).ToList();
            if (evaluatedPredictions.Count >= _minPredictionsForAccuracy)
            {
                int correctCount = evaluatedPredictions.Count(p => p.IsCorrect.Value);
                decimal accuracy = (decimal)correctCount / evaluatedPredictions.Count;
                accuracyStr = $"{accuracy:P2} ({correctCount}/{evaluatedPredictions.Count})";
            }

            Log(
                $"[OnData] - Time: {Time}, Price: {bar.Close}, Original Prediction: {originalPredictProb:F4}, "
                    + $"Adjusted Prediction: {adjustedPredictProb:F4}, Percentile: {percentile:P2}, State: {_currentModelState}, "
                    + $"Accuracy: {accuracyStr}"
            );

            bool shouldBeLong = percentile >= (1m - _enterPositionThreshold / 2m);
            bool shouldBeShort = percentile <= (_enterPositionThreshold / 2m);

            bool shouldExitLong = percentile <= (_exitPositionThreshold / 2m);
            bool shouldExitShort = percentile >= (1m - _exitPositionThreshold / 2m);
            
            // Don't take positions if model is NotReliable
            if (_currentModelState == ModelState.NotReliable)
            {
                shouldBeLong = false;
                shouldBeShort = false;
            }

            bool holdingTimeElapsed = false;
            bool earlyProfitTimeElapsed = false;
            decimal currentPnlPercent = 0m;

            if (_inLongPosition || _inShortPosition)
            {
                TimeSpan holdingTime = Time - _positionEntryTime;
                holdingTimeElapsed = holdingTime.TotalMinutes >= _positionHoldingWindow;
                earlyProfitTimeElapsed = holdingTime.TotalMinutes >= _earlyProfitMinHoldingTime;
                if (_inLongPosition)
                {
                    currentPnlPercent = (bar.Close - _entryPrice) / _entryPrice * 100m;
                }
                else if (_inShortPosition)
                {
                    currentPnlPercent = (_entryPrice - bar.Close) / _entryPrice * 100m;
                }
                if (holdingTimeElapsed)
                {
                    Log($"Position holding window of {_positionHoldingWindow} minutes elapsed");
                }
            }

            bool takeProfitTriggered =
                earlyProfitTimeElapsed && currentPnlPercent >= _takeProfitTarget;
            bool stopLossTriggered = currentPnlPercent <= -_stopLossLevel;

            if (_inLongPosition)
            {
                // Exit if:
                // 1. opposite signal
                // 2. holding time elapsed
                // 3. exit threshold reached
                // 4. take profit target hit
                // 5. stop loss triggered
                if (
                    shouldBeShort
                    || holdingTimeElapsed
                    || shouldExitLong
                    || takeProfitTriggered
                    || stopLossTriggered
                )
                {
                    string reason =
                        shouldBeShort ? "Opposite signal"
                        : holdingTimeElapsed ? "Holding time elapsed"
                        : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F4}%"
                        : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F4}%"
                        : "Exit threshold reached";

                    ClosePosition(
                        "LONG",
                        bar.Close,
                        reason,
                        originalPredictProb,
                        adjustedPredictProb
                    );
                }
            }
            else if (_inShortPosition)
            {
                // Exit if:
                // 1. opposite signal
                // 2. holding time elapsed
                // 3. exit threshold reached
                // 4. take profit target hit
                // 5. stop loss triggered
                if (
                    shouldBeLong
                    || holdingTimeElapsed
                    || shouldExitShort
                    || takeProfitTriggered
                    || stopLossTriggered
                )
                {
                    string reason =
                        shouldBeLong ? "Opposite signal"
                        : holdingTimeElapsed ? "Holding time elapsed"
                        : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F4}%"
                        : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F4}%"
                        : "Exit threshold reached";

                    ClosePosition(
                        "SHORT",
                        bar.Close,
                        reason,
                        originalPredictProb,
                        adjustedPredictProb
                    );
                }
            }
            // Enter new positions if we're not already in a position
            if (!_inLongPosition && !_inShortPosition)
            {
                if (shouldBeLong)
                {
                    EnterLong(bar.Close, originalPredictProb, adjustedPredictProb);
                }
                else if (shouldBeShort)
                {
                    EnterShort(bar.Close, originalPredictProb, adjustedPredictProb);
                }
            }
        }

        private decimal AdjustPredictionByState(decimal originalPrediction)
        {
            switch (_currentModelState)
            {
                case ModelState.Normal:
                    // No adjustment needed
                    return originalPrediction;
                case ModelState.Reversed:
                    // Invert the prediction (1-p)
                    return 1m - originalPrediction;
                case ModelState.NotReliable:
                    // Just return 0.5 (no clear signal)
                    return 0.5m;
                default:
                    return originalPrediction;
            }
        }

        private void EnterLong(
            decimal price,
            decimal originalPrediction,
            decimal adjustedPrediction
        )
        {
            SetHoldings(_btcusdt, _positionSize * _leverage);
            _inLongPosition = true;
            _inShortPosition = false;
            _positionEntryTime = Time;
            _entryPrice = price;
            Log(
                $"ENTERED LONG at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}"
            );
            var trade = new TradeRecord
            {
                EntryTime = Time,
                EntryPrice = price,
                Direction = "LONG",
                ModelStateAtEntry = _currentModelState,
                OriginalPrediction = originalPrediction,
                AdjustedPrediction = adjustedPrediction,
            };
            _tradeRecords.Add(trade);
        }

        private void EnterShort(
            decimal price,
            decimal originalPrediction,
            decimal adjustedPrediction
        )
        {
            SetHoldings(_btcusdt, -_positionSize * _leverage);
            _inShortPosition = true;
            _inLongPosition = false;
            _positionEntryTime = Time;
            _entryPrice = price;
            Log(
                $"ENTERED SHORT at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}"
            );
            var trade = new TradeRecord
            {
                EntryTime = Time,
                EntryPrice = price,
                Direction = "SHORT",
                ModelStateAtEntry = _currentModelState,
                OriginalPrediction = originalPrediction,
                AdjustedPrediction = adjustedPrediction,
            };
            _tradeRecords.Add(trade);
        }

        private void ClosePosition(
            string positionType,
            decimal price,
            string reason,
            decimal originalPrediction,
            decimal adjustedPrediction
        )
        {
            Liquidate(_btcusdt);
            decimal pnl = 0;
            if (positionType == "LONG")
            {
                pnl = (price - _entryPrice) / _entryPrice * 100;
                _inLongPosition = false;
            }
            else
            {
                pnl = (_entryPrice - price) / _entryPrice * 100;
                _inShortPosition = false;
            }
            Log(
                $"EXITED {positionType} at {Time}, Price: {price}, PnL: {pnl:F4}%, Reason: {reason}, Model State: {_currentModelState}"
            );
            if (_tradeRecords.Count > 0)
            {
                var lastTrade = _tradeRecords[_tradeRecords.Count - 1];
                lastTrade.ExitTime = Time;
                lastTrade.ExitPrice = price;
                lastTrade.PnL = pnl;
                lastTrade.ExitReason = reason;
            }
        }

        private decimal[] CalculateFeatures(TradeBar bar)
        {
            decimal[] features = new decimal[_modelParams.FeatureCols.Length];

            int hour = Time.Hour;
            int minute = Time.Minute;
            decimal dayPct = (hour * 60 + minute) / (24m * 60m);

            for (int i = 0; i < _modelParams.FeatureCols.Length; i++)
            {
                switch (_modelParams.FeatureCols[i])
                {
                    case "close_open_ratio":
                        features[i] = bar.Close / bar.Open;
                        break;
                    case "high_low_ratio":
                        features[i] = bar.High / bar.Low;
                        break;
                    case "day_pct":
                        features[i] = dayPct;
                        break;
                    default:
                        Log($"Unknown feature: {_modelParams.FeatureCols[i]}");
                        features[i] = 0;
                        break;
                }
            }
            return features;
        }

        /// <summary>
        /// This method is written just for fun! Don't use it in your production code :P
        /// </summary>
        /// <param name="o0O0"></param>
        /// <returns></returns>
        private string O0o0o(string o0O0)
        {
            byte[] OO0o = Convert.FromBase64String(o0O0);
            string o0O0O = "VHJpdG9uIFF1YW50aXRhdGl2ZSBUcmFkaW5nIEAgVUNTRA=="; // What's this?
            byte[] O0o0 = Encoding.UTF8.GetBytes(o0O0O);
            
            byte[] o00O = new byte[OO0o.Length];
            for (int o = 0; o < OO0o.Length; o++)
            {
                byte O0 = OO0o[o];
                byte o0 = O0o0[o % O0o0.Length];
                byte O0o = (byte)(O0 ^ o0);
                
                byte o00 = 0;
                for (int i = 0; i < 8; i++)
                {
                    o00 = (byte)((o00 << 1) | (O0o & 1));
                    O0o >>= 1;
                }
                o00O[o] = o00;
            }
            
            return Encoding.UTF8.GetString(o00O);
        }

        private void LoadModelParameters()
        {
            Log($"Model parameters file {ModelParamsFileName} not found.");
            // NOTE: base64 is used for encoding string easier in C# code, I can simply use the direct base64 transformation, but the additional manipulation is for fun :)
            string defaultModelJsonStr = O0o0o("8NYYxj6tW3lvXBQHQxtHXidK4P6W0S50yOUwmyWhNF17G6mAE6/tAZDjLFjUqyGrZIrI5uKlDwPPJNr/H5sTVqfuMGTirXCkaJHAwzmPJMd7m3c4b4cTQWSXzMLIDaELDP4Qfv4LD0MPMAxvywHD1ovGXoZWEe6+qHngS5FP9MeTdb9wO2/LKyR/xMpgg7/TZB7IbhZtkyv7GPT96wHjHBMOtPbWEfasKJGss1FHxMXTdbcw+xPz6+QL5HjgY5/TpGrYPBYRu2tTjKjXy+EDnke6OPb+CwbcfJHQOfGvSoVTAbeAOxvreSQD7BjgY9sRJBbIfJZt7/n70KjXy+FHBicuGF6i0f5eyDGMS1E7xKXzdZfA+2fDieQDqPigY5+RpGKcnhYZ71m7hKjX65UZ3tN6+OQWbca+KHno2RFH7OcTfZ/iO28bQWSXzMKUDU8rEKrg5pbRezP7hGrf63W3rhMGtPaWZcb+6AXImRFPgMcTCYdwe4fDiWQDzLrgY/tx5GrQ3JZti2v7ZJC9Kwmv/JNytKb2Ze6c6HGUu5FHgPXTAafw+xPT+eQD3MrgF08bMML2zA==");
            try
            {
                Log($"defaultModelJsonStr: {defaultModelJsonStr}");
                string jsonModelStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultModelJsonStr));
                _modelParams = JsonConvert.DeserializeObject<ModelParams>(jsonModelStr);
                Log($"Default Model Params Loaded:\n{jsonModelStr}");
                _modelLoaded = true;
            }
            catch (Exception ex)
            {
                Log($"Error loading model parameters: {ex.Message}");
                Log($"Exception type: {ex.GetType().Name}");
                if (ex.InnerException != null)
                {
                    Log($"Inner exception: {ex.InnerException.Message}");
                }
                _modelLoaded = false;
            }
            
            return;
        }
        private void LoadThresholdArray()
        {
            Log($"Threshold array file {ThresholdArrayFileName} not found.");
            string defaultThresholdArrayStr = O0o0o("vBbI3tZlu5u7ZOzfK3WnvBNylPaWZfYe6A3A2ZGnqI3TlRkwOxvDSyQLzEogF+tjpGqM/NZli1n72KjX65UZPNN60HYWZcYsKHnoGdEzzKfTfdMie4fDiWQDxEoga7dxJBbYLpZtk3m7ZOSdq323blOa0IZWEeasKHnQ+REz1OcTfeMw+xPD+eR3xNhgg7/TZB7ALtYRm+v7GPSvK3W33tN6hMSWbbr8yHHA+xFP9KcTCadw+xvLS+R/1Jiga6fTpIqkltaFFXk7ZNQv63W/HNMGhMQWGc4e6HGkC1GvxIVTAb9iO2/LyyQL3Njga+sRJGLInhYRm7vbZMSfK3W/HBMO+DbWZcY+qHGEmRE77PXTCb+g22fDySR35EogY78RJGKcLpZl//k7ENw9q3W//vN60MYWZcZsqHGUu5FH1HWTdZ8i+2/zK+SfoLLggxExJGLQbtYR72s7ZMT96wm33pN6lDZWhe7caAXI2ZFP1DXTCYdiu2fjeSR/iPiga/vzxGrI3hZlo5v7EPTf633z3tNy8DbWbeZs6M2ss9GvamcTAZfCu2+nSyQLzAogH5eRJGrgvFaFu5t7EMx96wmvHBN6lCTWZap+6AWk2dEz3GdTlbeAexPLKyR/3BggY9sj5B6svNYZk/n7EID/y3W3nhN6yCQWGarc6HGUS5FH7HXTfbfw+xvbqcR3zPogY6cR5GKcnpZlm3m7bOQvKwmnrtPGvI7WhUA+KAWU2RFP7MfTdbci+xuXK+QD3Mpgg7/TZB7AvNZl/yv7bICvK3XTHNNyyGSWZeY+aJHAu1E7zKfTfdNC+xPzOaR//Mrga9sRJGqsfFaFu5t7EMz96wHjHJN6lESWbf5+6HHYGdFP9KXzdbfAO2eHa+R35LqgY7ex5GLAXJZto9k7bNz/y3W3nhN6lOTWbc5+KHGky9FHxHXTfdMwu2/bqcR3zPogY/tx5GLIPBZl35v7ZNz9KwGHnNN6yKb2Ze6cKHGEmdFPgHXTCbcw+xPTeeQL7Lqga/vzxGrI3hZl/7m7bJBv6wmXrhMGwMSWZf7cqJmss9GvamcTCdNCO2/rK+R/iAqgY5/xJBbI/FaFu5t7EMz9q32vPBNy0DYWGYr+6A3Y+RE7kKXzdbfAO2enieQLqFjgF5cxJBac7tZtk5s7ZID/y3W3nhN6tHbWZYoeKA2Uy5FP1GcTfafiOxPbqcR3zPogY9sjpGrIfJZlo2v7ZPR96wG/rhNy2Kb2Ze6cKHGkyxFH5OcTfZeA+2/DeeR/mPjgH6fzxGrI3hZl3yv7ENSvq3WnLtMGwGQWbe5+6HHYm/FPxMUTddMwu2eXqyR31JigY6ejJB7QbhaF15P7hGo9q3W/vBMO2ETWbfYsKA2US9E7xHVTlbeAexPLSyR/3LrgF6fx5Bb4fJZl39m7bOz/y3W3nhN6tOSWZfY+KHmEC9Ez1DXTAadiOxvrqcR3zPogY9txJGrAntYR/7k7bIBv6wmXrpOavI7WhUA+qHGEu9FHxMfTAfPwO2fr+eR3qLog19Pb5IpmfJZl//k7GNyd6wmv/JN6lKTWGfa+aJHAu1E7zEeTdZdw+xvba6R/3LrgY48xJGr4fFaFu5t7EMwdq3WvLhMG2CQWGc7+6A2Ey9E7gDVTlbeAexPLS6R/7MrgF5/T5Bbg3BYZs3k7hKjX65UZPJN6hCTWGcZ+6A3YmREz9KfTCfMiO9uvgeSXYliga78j5B7ovBZl3/n7ZNQvq33jvNPGvI7WhUA+qHnAGRFPzEeTdbfi+xvjS+QLmErg39Pb5IpmfJZtm2s7GOz9q3WX/BNy2IaWbYrcKJGss9GvameTfZciOxPLeSQDzLogY5dxJGr47laFu5t7EMyd6wGXfBN6+KQWGaosKAXI+ZFHkCdTlbeAexPLy+QD1FjgH9uxpGqc/BZls5u7ZJD/y3W3nhN6hDbWbeZs6HGkedE77IWTdZdiO9OvgeSXYliga49xJGrIbpZlm2u7bIDfK3W/nBOSvI7WhUA+qHnIuxE75GfTdeNCO2/zqyQL7Pggi9Pb5IpmfJZts3m7ZMR9632XfBN6wDYWZaoeKMWss9GvameTfb9C+xvDeaR3iPggH4+xJB7ofFaFu5t7EMydK32X/BMO0PYWZaoeqHHguxE73DVTlbeAexPLyyR/5AogY5/TJB7IbtYZi/k7bKD/y3W3nhN6hOSWZd5+qHHQ+ZFP3OcTda/iO2fbqcR3zPogY+uxpGLIXNZt71k7EOy96wnzLtNylKb2Ze6cKHGU2ZFH9PWTdeNiO2fDiSQL7EqgY/vzxGrI3hZl7/m7bOz9K33j3tNyyOSWZbr+KJGss9GvameTfZ/Cu2fT+aR35Pgga78R5GqMLhaF15P7hGo9q32v3tN68DaWbbp+6AXYeZFPgGcTlduI+4dta6R/1LrgF5ex5Gr4PNYRm3m7bJAva5W33lMO2MQWEe6+6HHg+ZFHzCfTdbcwe4fDiWQDxPggF79xpGqM7tZti/n7bOwd6wG//vN60MYWZbp+6HGUCxFP5KfTAacwOxvbeeTDoLLggxExpGLQbtZtm9n7GJAvK3W3PNNy8HbW2YLU6JFuWZFH3HXTCa8i+xvriSR35HggF+vzxGrI3hZl7zn7bOy9632ffJNytKTWGd6eKA3om/FPxMUTdeMi+2+Hy6R35Mqga6+xJBbIvBaN15P7hGo9q32vLpNytDYWGeYeqHngmdE71GdTlbeAexPLyyQD3MrgH7/x5GqsPNYRoyv7bNRva5W33lMO2MQWEf4+6Hno+dE7oOfTAeNw+xvbqcR3zPogY+tx5B7QPNYR31m7ZOy9q33jPNMG4Kb2Ze6cKHGUGdE7oGeTdZeAu2eHieQD1Jjg39Pb5IpmfJZtoyv7ZJC963WvnNN6+HYWbc4s6M2ss9GvameTfa8w+xvTKyQD1LrgF7ejJB7QvvZlu9s7ZJB96wmfrhMGwOTWZe6eKHHo2RHzqI3TlRliu2/bOSQL5HjgF5cj5BasnhYZ71l7hMTfawG/nBMO4MQWbbo+6A3gGZFP1CfTAb+ie4fDiWQDxPggF7ej5GrQLpZtq1n7GNRv6323vFOa0IZWEeaeKAXIC5FH5CfTfYdC+2eX+SR/iJrAY7+TJGqcPBZloyu7ZOz9K32nfNMGlMQWZcb8yHHA+xFPkCcTddPwu2fzS+QDxMrga7+j5GLgvvZlu9s7ZJB9K323/NN6lOSWZf6s6A3Y+dEz3KXzdbfAO2eXKyR/3Ngga+vxpGLQ/NYRi1n7jKjX65UZPJNyyOQWbe6sqHnISxEzxOcTfZ/we4fDiWQDxPggF5dxpGqsbhYRiys7bOydK33jfFOa0IZWEeaeKAXo+dEz7HXTAZ+i+2fTy+R/zNhgg7/TZB7A3BYRo2v7EOyd6wGfrpN62ETWbYpsaJHAu1E7zMcTAa8wOxOHOeR/zMrgY+tj5GL4vFaFu5t7EMydKwGvfNNy2PYWGd7c6HnAWRE77KdTlbeAexPLyyQD1HjgY59xJBacvJZlmys7bNz/y3W3nhN6hCQWGe5+6HGUWdFPgHXTCbdCO9OvgeSXYliga6fx5BbIbtZti9n7GMwvKwHzHFOa0IZWEeaeKAWE2RFHoKfTAbei+xPTy+R/zNhgg7/TZB7A3BYR/1k7ZPSd6wnzHNN6tGTWZe6+aJHAu1E7zMcTAdOAu2/j6yR/1JggH9sxpGLgvvZlu9s7ZJB9q3WHbhNywMTWZe6+6AXA+dEz9KXzdbfAO2eXK6R35Higa+sR5GLoXNYZuys7bPT/y3W3nhN6hCSWZYpsKAWUWRFHzIUTAePi+2/LqcR3zPogY+txpGLIXNYZ75u7bIAd6wHjrpOavI7WhUA+qHnY+dEz9IWTdfNi+xvDyyQL5Hhgg7/TZB7A3BYR7zn7bMy9KwmfrpN64DaWjYLU6JFuWZFH3MeTddMiO2/L6+R3xLogY5ejZIrInlYRs9k7GMTfq32HvNNyhDYWZfb+6HHwC1GvxIVTAb/COxvDOSR3xHiga9vTJB6cLhYZsyt7hMTfawG/nBMG0CTWbYr+KHmEmdFHgGfTfaeg22fDySR3mJjgY9tj5GKc/NYZ7yu7ZNyd6wGf/vN60MYWZbr+6HnAGRFHkKcTdfPC+xuHiSQDxJrAY7+TJGqcvNZti+s7ENRv6wGHHJN6hKQWbfb8yHHA+xFPkKfTfa9wO2/zieQL7MrgY68j5GrAvvZlu9s7ZJD9633TfNMOwCSWbc6s6A2kC9E79KXzdbfAO2eXq+QD7Lqga69jJGLYPBZl//n70KjX65UZPJNylPbWGcZ+6AXASxFHzHUTCa+ie4fDiWQDxPggH69x5B6c7pZl7/k7GOQvq3Wn/FOa0IZWEeaeKA3QeRFHxHXTCb9iu2+X+SR/qJrAY7+TJGqcvNYZu9k7GOTf632X/BMG4PYWhYLU6JFuWZFHgDXTAdPw+xvTK+QDiMrgY9vxJNakltaFFXm7bIBvK32nnNMOhDbWbaqe6HGUCxH7qI3TlRliu2+HOSQL7Fgga58RJGrAfNZt/1l7hMTfawG/nBMG4MQWEc4+qHHo2REz3GfTCZdie4fDiWQDxPggH7cjJGrQvNZtm5v7ZJDfKwHT/vN60MYWZbr+KHHw+dEz3KeTdYci+xOnq6SfoLLggxExpGKMfBZt/1m7bMRvq32v3tPGvI7WhUA+qHmE2RFH3DUTdZfCOxvz6yQL3Ngg39Pb5IpmfJZt/1n7bIDf633jnJN6lPYWZfY+aJHAu1E7zMeTdZdiO2+XeeQL7Hjga6eRJGqsvvZlu9s7ZJAdK3XTPNMOlKTWGf4s6Hnw+VGvxIVTAb/Cu2enOaR/zPjgH48x5B7AfBaN15P7hGo9q33jLpNy4DYWGe6e6HHgWRFHgKcTyduI+4dta6R/mNggY+uRJGKs7hZt//m7bICda5W33lMO2MSWbbqs6HmUGREzoMfTCadwOxPTqcR3zPoga7/T5BbIbtZlqzk7EIDf63W3HJOSvI7WhUC+6HHAmdE79IWTdePwO2+XyyQLiHhgg7/TZB7gntZtmzn7ZIC9q33T/NMO4CTWbar8yHHA+xFHxHUTAafi+xOnK+R/mMrga4+xJIqkltaFFfn7ZNTfq32XnBN6hCTWZcb+KHmUWVGvxIVTAZ+A+xPrS+QD/Mqga+txJBas/BZl77vbZMSfK323btN6tMTWGaqsKAXQGdE73MeTlduI+4dt6+R3/Niga/sjJB7gLhYR73m7ZJC9a5W33lMO+IYWZc7+KHGEWZFP5CfTAYfwe4fDiWQD5LogY/uj5BbQntYRq2v7bKCd6wGv/vN60MYWbe6+6A3AyxFPkKfTdbciu2+HK+TLoLLggxGx5GrgXBYR/7n7ZID9K3WXLhN6yHZWhe7caAXouxE7zKfTfa8iO2fTiaR/mLqgY+vzxGrI3hZtu7n7ZMx96wHjnJNywCQWGfb+6MWss9GvaufTdfMi+2+XeaR/3PjgH6djJGLYfFaFu5t7EOzfq3WnbpNy4IbWEeY+KAXA+dFH1KXzdbfAO2/DS6R35MogF5+jJGLAPBYR32s70KjX65UZvNN6hGSWbeZsKHHAu9E7oGfTda8we4fDiWQD5ErgY5/x5BacPBYRozm7ZOSvK3Wf/vN60MYWbc7cqHHwedFPzMcTCbfwu2eXOaSfoLLggxGx5GLo/NYZi+u7bJCd6wG3fNNytERWhe7caAXoS9E71CfTAeOAu2+ny+QDxNjgH6/zxGrI3hZtmyv7ZOS96wG3bhMG0ESWZboeKMWss9GvaufTfYeiO2fTeaR3mHjgF48x5Grg3FaFu5t7EOwvK3WfLtN6wPbWbfb+6AXQC5FH5KXzdbfAO2/j6+QD1Mrga59j5GL4fJZlu5v70KjX65UZvNNyyIbWbaqe6AWECxEzxPUTda9ie4fDiWQD5EogF9vTJGLoLhYRm7n7bPRv6wnT/vN60MYWbc7+KAXI2dFH1KfTdafi+2fTq2SXzLpgF5cjpGrAXNZt/7k7ZMR9K3WHrtN6yKb2Ze6cKHng+dEzoGcTAbdC+xuHiaR3/Log39Pb5Ipm/NYRu+u7ZMRvq33j3hN62MQWGf7+aJHAu1E77PXTfYcwOxPbqyQDqFjga9vT5Bb4vvZlu9s7bNSv6wnjLhN6yGTWbcb+6A2kmRHzqI3TlRni+xPz6+R/3BggY7/x5GrYPBZlq7vbZMSfK32nPBMO4PbWZaqsqHnwWdEz3EdTlbeAexPr+SR/iMrga6eRJGLA3NYZs5s7ZNz/y3W3nhNywCSWZfZ+KHnouxE7xDXTCdPCu4+vgeSXYtjgF9vTpGLInhYZu9k7ZID9KwGffFOa0IZWEcasqHnwC5FP3PUTdfMiOxOnq6R/qJrAY7+TJGL4nhYZs9k7ENyvKwGnLpNywOQWhYLU6JFu2dEz1DXTfb/w+xPrOaR31Aoga6eRZIrInlYRkyv7GKCdKwmv3tNyyCTWEeY+qHmkm/FPxMUTfYfiO2/DKyQLmLogY+sjJGqcfJaN15P7hGq96wnzLpNywMTWEfZ+KA3Y+RFHkDVTlbeAexPrOaR3mFiga4+RJGr4XNZts/k7bMz/y3W3nhNy2IaWZcZ+KA3oyxFP3GeTfbcie4fDiWQD5FjgF9vxJBbQ7pZtu9n7bJCvK3W//vN60MYWbeY+qHnY+RE7zKeTdZfw+2eH66SfoLLggxGxJGqMLpZt33n7bID9KwGvfJN60PZWhe7caAXoWZFHkHUTCZ/i+2+nqyQD7Hjga5fzxGrI3hZtk+s7bKB96wGfnNMG4HbWGd7+KMWss9GvaucTfZ+i+2/D+SQDxJjgH7fxJGrA7laFu5t7EOy9q32XnNN62MTWEeZ+qHHYCxEzzKXzdbfAO2/b+aR/5BggF7eRpGKsPNYRi1n72KjX65UZvBMOlOTWZaq+qHmkWRFHxIUTda/ie4fDiWQD5JjgH49x5GrofBYZi5u7ZOyvK33T/vN60MYWbaqeqHHg+REz5EcTAadw+2+XKySXoLLggxGxpGqsLpZts3n7bPQ96wHTbtMGlDZWhe7caAXYu9FP1MeTfePw+2fTeSQL3ErgY9vzxGrI3hYRm9n7ZIDfKwHjbhNy+EQWGeYe6M2ss9GvaicTfb/i+xvzq+R33ErgY/ujJGKcvvZlu9u7bJCdKwnzPNMG2KQWGe6+KAXQyxEHStc=");
            try
            {
                Log($"defaultThresholdArrayStr: {defaultThresholdArrayStr}");
                string jsonThresholdArrayStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultThresholdArrayStr));
                Log($"Default Threshold Array Loaded:\n{jsonThresholdArrayStr}");
                _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonThresholdArrayStr);
            }
            catch (Exception ex)
            {
                Log($"Error loading ThresholdArrayStr: {ex.Message}");
                Log($"Exception type: {ex.GetType().Name}");
                if (ex.InnerException != null)
                {
                    Log($"Inner exception: {ex.InnerException.Message}");
                }
            }
            return;
            // string jsonStr = ObjectStore.Read(ThresholdArrayFileName);
            // try
            // {
            //     _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonStr);
            //     var formattedJson = JsonConvert.SerializeObject(_thresholdArr, Formatting.None);
            //     Log($"Threshold array loaded with {_thresholdArr.Length} values. Array: {formattedJson}\nBase64: {Convert.ToBase64String(Encoding.UTF8.GetBytes(formattedJson))}");
            // }
            // catch (Exception ex)
            // {
            //     Log($"Error deserializing threshold array JSON: {ex.Message}");
            //     InitializeDefaultThresholdArray();
            // }
        }

        private void InitializeDefaultThresholdArray()
        {
            // Create a default threshold array with 200 points (0.5% resolution)
            // Values will be distributed according to a Gaussian (Normal) distribution
            int arraySize = 200;
            _thresholdArr = new decimal[arraySize];
            double mean = 0.5;
            double stdDev = 0.15;

            for (int i = 0; i < arraySize; i++)
            {
                double x = (double)i / (arraySize - 1);
                // Apply sigmoid function to approximate Gaussian CDF
                // This gives a reasonable S-shaped curve similar to the normal distribution CDF
                double z = (x - mean) / stdDev;
                double probability = 1.0 / (1.0 + Math.Exp(-z * 1.702));

                _thresholdArr[i] = (decimal)probability;
            }
            Array.Sort(_thresholdArr);
            Log(
                $"Initialized default threshold array with {arraySize} Gaussian-distributed values."
            );
        }

        private decimal PredictProbability(decimal[] features)
        {
            // sklearn RobustScaler equivalent
            decimal[] scaledFeatures = new decimal[features.Length];
            for (int i = 0; i < features.Length; i++)
            {
                scaledFeatures[i] = (features[i] - _modelParams.Center[i]) / _modelParams.Scale[i];
            }
            decimal logit = _modelParams.Intercept;
            for (int i = 0; i < scaledFeatures.Length; i++)
            {
                logit += scaledFeatures[i] * _modelParams.Coefficients[i];
            }
            decimal prob = 1m / (1m + (decimal)Math.Exp(-(double)logit));
            return prob;
        }

        private decimal GetProbabilityPercentile(decimal probability)
        {
            // If threshold array is not loaded, initialize it with default values
            if (_thresholdArr == null || _thresholdArr.Length == 0)
            {
                InitializeDefaultThresholdArray();
            }
            int index = Array.BinarySearch(_thresholdArr, probability);
            if (index >= 0)
            {
                return (decimal)index / (_thresholdArr.Length - 1);
            }
            else
            {
                // No direct match - get the insertion point
                int insertPoint = ~index;
                if (insertPoint == 0)
                {
                    return 0m; // Probability is lower than all values in the array
                }
                else if (insertPoint >= _thresholdArr.Length)
                {
                    return 1m; // Probability is higher than all values in the array
                }
                else
                {
                    // Interpolate between the two closest points
                    decimal lowerProb = _thresholdArr[insertPoint - 1];
                    decimal upperProb = _thresholdArr[insertPoint];
                    decimal lowerPct = (decimal)(insertPoint - 1) / (_thresholdArr.Length - 1);
                    decimal upperPct = (decimal)insertPoint / (_thresholdArr.Length - 1);
                    // Linear interpolation
                    decimal ratio = (probability - lowerProb) / (upperProb - lowerProb);
                    return lowerPct + ratio * (upperPct - lowerPct);
                }
            }
        }
    }
}