Overall Statistics |
Total Trades 50 Average Win 3.55% Average Loss -3.55% Compounding Annual Return 29.016% Drawdown 51.700% Expectancy 0.642 Net Profit 155.326% Sharpe Ratio 0.914 Probabilistic Sharpe Ratio 33.881% Loss Rate 18% Win Rate 82% Profit-Loss Ratio 1.00 Alpha 0.302 Beta -0.09 Annual Standard Deviation 0.335 Annual Variance 0.112 Information Ratio 0.875 Tracking Error 0.403 Treynor Ratio -3.412 Total Fees $595.69 |
class SiegfriedsRework(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetEndDate(2003, 9, 4) self.SetCash(100000) self.UniverseSettings.Resolution = Resolution.Daily self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None)) # self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: Expiry.EndOfMonth(time))) self.Settings.RebalancePortfolioOnInsightChanges = False self.Settings.RebalancePortfolioOnSecurityChanges = True self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.SelectCoarse, self.SelectFine)) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.SetBenchmark("SPY") # NOT SURE WHAT THIS DOES self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY", 120), self.Rebalance) self.num_symb_coarse = 8000 self.min_market_cap = 5 self.min_roic = 0.7 self.max_roic = 20 # max ROIC at purcahse only. if stock has roic intially below this threshold, but rises while in holdings, stock won't be liquidated self.min_volume = 200000 # minimum trading volume self.max_peg = 100 # max peg at purcahse only. if stock has peg intially below this threshold, but rises while in holdings, stock won't be liquidated self.new_symbols = [] self.invested_stocks = [] self.monthly_rebalance = False self.recently_rebalanced = False ##### Universe Selection, OnSecuritiesChanged, OnData are all called midnight # coarse/fine universe selection runs everyday at midnight def SelectCoarse(self, coarse): if self.monthly_rebalance == False: self.recently_rebalanced = False return Universe.Unchanged # if selectcoarse returns universe.unchanged, selectfine is not called self.recently_rebalanced = True self.monthly_rebalance = False filtered_coarse = [x for x in coarse if x.HasFundamentalData] # removing ETFs, ETNs sorted_coarse = sorted(filtered_coarse, key=lambda k:k.DollarVolume, reverse=True) min_vol_coarse = [x for x in sorted_coarse if x.DollarVolume > self.min_volume] top_liquid_coarse = min_vol_coarse[:self.num_symb_coarse] return [i.Symbol for i in top_liquid_coarse if i.Symbol.Value != 'PDLI'] def SelectFine(self, fine): filtered_fine = [x for x in fine if x.CompanyReference.CountryId == "USA" and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.Energy and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.FinancialServices and x.MarketCap/1000000 > self.min_market_cap and x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths > 0 and x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths > self.min_roic and x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/x.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths < self.max_roic and x.ValuationRatios.NormalizedPEGatio > 0 and x.ValuationRatios.NormalizedPEGatio < self.max_peg] sorted_fine = sorted(filtered_fine, key=lambda x:x.ValuationRatios.NormalizedPEGatio, reverse = False) quartile = 1 if len(sorted_fine)/4 <= 0 else int(round((len(sorted_fine)/4))) bottom_quartile = sorted_fine[:quartile] # self.Debug(f"filtered_fine: {[str(i.Symbol) for i in filtered_fine]}") self.new_symbols = [i.Symbol for i in bottom_quartile] # self.Debug(f"chosen_fine: {[str(i) for i in self.new_symbols]}") for symbol in self.new_symbols: if symbol not in self.invested_stocks: self.invested_stocks.append(symbol) # add new securities to watchlist # self.Debug(f" new symbols: {[str(i) for i in self.new_symbols]}") # self.Debug(f"invested stocks: {[str(i) for i in self.invested_stocks]}") return self.invested_stocks def OnData(self, data): if not self.recently_rebalanced: return insights = [] for symbol in self.invested_stocks: security = self.Securities[symbol] if security == self.spy: # skip SPY continue if security.Fundamentals.FinancialStatements.IncomeStatement.EBIT.TwelveMonths/security.Fundamentals.FinancialStatements.BalanceSheet.InvestedCapital.TwelveMonths < self.min_roic \ or security.Fundamentals.MarketCap/1000000 < self.min_market_cap: insights.append(Insight.Price(symbol, timedelta(days = 7560), InsightDirection.Flat)) self.invested_stocks.remove(security.Symbol) #remove security from watchlist self.Debug(f"!!Liquidate {security.Symbol}") else: insights.append(Insight.Price(symbol, timedelta(days = 7560), InsightDirection.Up)) self.EmitInsights(insights) # this is called according to Schedule.On in Initialize def Rebalance(self): self.monthly_rebalance = True # def OnEndOfDay(self): # self.Debug(f"Invested Stocks List: {[str(symbol) for symbol in self.invested_stocks]}") # self.Debug(f"Portfolio Invested Stocks: {[str(symbol) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}") # self.Debug(f"Value of Stocks: {[float(self.Portfolio[symbol].Quantity * self.Portfolio[symbol].Price) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]}") # self.Debug(f"Portfolio % Invested: {(self.Portfolio.TotalPortfolioValue - self.Portfolio.Cash)/self.Portfolio.TotalPortfolioValue}")