Overall Statistics |
Total Trades 24 Average Win 0.12% Average Loss -0.13% Compounding Annual Return -30.566% Drawdown 26.800% Expectancy 0.087 Net Profit -12.938% Sharpe Ratio -0.835 Probabilistic Sharpe Ratio 10.694% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 0.90 Alpha -0.218 Beta 0.616 Annual Standard Deviation 0.324 Annual Variance 0.105 Information Ratio -0.868 Tracking Error 0.213 Treynor Ratio -0.438 Total Fees $30.58 |
class MultidimensionalTransdimensionalAntennaArray(QCAlgorithm): def Initialize(self): self.UniverseSettings.Resolution = Resolution.Minute self.SetStartDate(2020, 1, 1) self.Settings.RebalancePortfolioOnInsightChanges = False; self.Settings.RebalancePortfolioOnSecurityChanges = False; symbols = [Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in [ "SPY", # US Large Cap ETF "VEA", # Developed Foreign Stocks (TradedSince: 2007/8)ETF "IEF", # US 10Y Gov.Bonds ETF "DBC", # GSCI Commodities ETF (TradedSince: 2006/3) "VNQ" # US RealEstate ETF ]] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, None)); self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction)) self.SetExecution(ImmediateExecutionModel()) self.lastRebalanceMonth = -1 def RebalanceFunction(self, time): # Rebalance at the open of the first trading day of each month if self.Time.hour == 9 and self.Time.minute == 31 and self.Time.month != self.lastRebalanceMonth: self.lastRebalanceMonth = self.Time.month return time