Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.821 Tracking Error 0.221 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
from Portfolio.BlackLittermanOptimizationPortfolioConstructionModel import BlackLittermanOptimizationPortfolioConstructionModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Risk.NullRiskManagementModel import NullRiskManagementModel from datetime import datetime, timedelta class BasicTemplateFrameworkAlgorithm(QCAlgorithmFramework): def Initialize(self): # Set requested data resolution self.UniverseSettings.Resolution = Resolution.Minute self.SetStartDate(2019, 1, 1) #Set Start Date self.SetEndDate(2019, 1, 12) #Set End Date self.SetCash(7750) #Set Strategy Cash self.SetWarmUp(200) self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.ExtendedMarketHours = True tickers = ["TRVN", "AAPL", "BA", "TTP"] symbols = [ Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers ] self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.SetAlpha(CustomEmaCrossAlphaModel(50, 200, Resolution.Minute)) self.SetPortfolioConstruction(BlackLittermanOptimizationPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) class CustomEmaCrossAlphaModel(AlphaModel): def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady: if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: insights.append(Insight.Price(symbolData.Symbol, timedelta(days=1), InsightDirection.Down)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: insights.append(Insight.Price(symbolData.Symbol, timedelta(days=1), InsightDirection.Up)) symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added, algorithm) symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) symbolData.RegisterIndicator(algorithm) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: def __init__(self, security, algorithm): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None self.algorithm = algorithm ## Create consolidator for specific symbol here self.consolidator = TradeBarConsolidator(timedelta(days=1)) ## 5-period TradeBar Consolidator -- edit as self.consolidator.DataConsolidated += self.OnDataConsolidated ## Add fuction to do what you want every 5-minutes with your data algorithm.SubscriptionManager.AddConsolidator(self.Symbol, self.consolidator) ## Register consolidator # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False def RegisterIndicator(self, algorithm): algorithm.RegisterIndicator(self.Symbol, self.Fast, self.consolidator) algorithm.RegisterIndicator(self.Symbol, self.Slow, self.consolidator) def OnDataConsolidated(self, sender, bar): ## Just example code to confirm the consolidator is working self.algorithm.Log("Consolidator Bar created for >> " + str(self.Symbol) + f" Received at {self.algorithm.Time}") self.algorithm.Log("Fast EMA: " + str(round(self.Fast.Current.Value))) self.algorithm.Log("Slow EMA: " + str(round(self.Slow.Current.Value))) @property def SlowIsOverFast(self): return not self.FastIsOverSlow