Overall Statistics |
Total Trades 188 Average Win 0.57% Average Loss -0.27% Compounding Annual Return 3.038% Drawdown 12.700% Expectancy 1.184 Net Profit 34.914% Sharpe Ratio 0.351 Probabilistic Sharpe Ratio 0.039% Loss Rate 29% Win Rate 71% Profit-Loss Ratio 2.06 Alpha 0.028 Beta 0.003 Annual Standard Deviation 0.079 Annual Variance 0.006 Information Ratio -0.589 Tracking Error 0.155 Treynor Ratio 10.681 Total Fees $1341.85 |
from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp class PriceEarningsAnamoly(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetEndDate(2020, 1, 1) self.SetCash(100000) self.SetBenchmark("SPY") self.UniverseSettings.Resolution = Resolution.Daily self.symbols = [] self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.AddEquity("SPY", Resolution.Daily) self.SpyMomentum = self.MOMP("SPY", 3, Resolution.Daily) self.SetWarmUp(3) # record the year that have passed since the algorithm starts self.year = -1 self._NumCoarseStocks = 200 self._NumStocksInPortfolio = 10 self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) def CoarseSelectionFunction(self, coarse): if self.Time.year == self.year: return self.symbols # drop stocks which have no fundamental data or have low price CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData and x.Price > 5] sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=False) return [i.Symbol for i in sortedByDollarVolume[:self._NumCoarseStocks]] def FineSelectionFunction(self, fine): if self.Time.year == self.year: return self.symbols self.year = self.Time.year fine = [x for x in fine if x.ValuationRatios.PERatio> 0 and x.OperationRatios.RevenueGrowth.Value > 0] sortedPERatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio/x.OperationRatios.RevenueGrowth.Value) #sortedPEGRatio = sorted(PEGRatio) self.symbols = [i.Symbol for i in sortedPERatio[:self._NumStocksInPortfolio]] return self.symbols def OnSecuritiesChanged(self, change): # liquidate securities that removed from the universe for security in change.RemovedSecurities: if self.Portfolio[security.Symbol].Invested: self.Liquidate(security.Symbol) count = len(change.AddedSecurities) # evenly invest on securities that newly added to the universe for security in change.AddedSecurities: self.SetHoldings(security.Symbol, 1.0/count) def OnData(self, data): if self.SpyMomentum is None or not self.SpyMomentum.IsReady: return if self.Portfolio.Invested: if self.SpyMomentum.Current.Value < -0.1: self.Liquidate()