Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np import pandas as pd from datetime import timedelta ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017, 01, 01) #Set Start Date self.SetEndDate(2017, 06, 30) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data equity = self.AddEquity("GOOG", Resolution.Daily) # Add the underlying stock: Google option = self.AddOption("GOOG", Resolution.Daily) # Add the option corresponding to underlying stock self.symbol = option.Symbol # In Initialize self.OptionSymbol = option.Symbol; self.Debug("numpy test >>> print numpy.pi: " + str(np.pi)) # filter the contracts with strikes between(ATM Strike - 10 * strike space value, market price + 10 * strike space value) and with expiration days less than 180 days option.SetFilter(-10, +10, timedelta(0), timedelta(180)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' for i in data.OptionChains: if i.Key != self.symbol: continue optionchain = i.Value self.Log("underlying price:" + str(optionchain.Underlying.Price)) df = pd.DataFrame([[x.Right,float(x.Strike),x.Expiry,float(x.BidPrice),float(x.AskPrice)] for x in optionchain], index=[x.Symbol.Value for x in optionchain], columns=['type(call 0, put 1)', 'strike', 'expiry', 'ask price', 'bid price']) self.Log(str(df))