Overall Statistics |
Total Trades 5778 Average Win 0.42% Average Loss -0.13% Compounding Annual Return 14.236% Drawdown 40.900% Expectancy 0.366 Net Profit 278.341% Sharpe Ratio 0.75 Loss Rate 69% Win Rate 31% Profit-Loss Ratio 3.35 Alpha 0.073 Beta 0.69 Annual Standard Deviation 0.163 Annual Variance 0.026 Information Ratio 0.434 Tracking Error 0.116 Treynor Ratio 0.177 Total Fees $9065.01 |
from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * class BasicTemplateAlgorithm(QCAlgorithm): def __init__(self): self.reb = 1 self.num_coarse = 100 self.num_fine = 20 self.symbols = None self.first_month = 0 def Initialize(self): self.SetCash(100000) self.SetStartDate(2007,1,4) self.SetEndDate(2017,1,1) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction) self.Schedule.On(self.DateRules.MonthStart(self.spy), self.TimeRules.AfterMarketOpen(self.spy,5), Action(self.rebalance)) def CoarseSelectionFunction(self, coarse): if self.reb != 1: return (List[Symbol]()) selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.num_coarse] list = List[Symbol]() for x in top: list.Add(x.Symbol) return list def FineSelectionFunction(self, fine): if self.reb != 1: return (List[Symbol]()) self.reb = 0 filtered_fine = [x for x in fine if x.OperationRatios.OperationMargin.Value and x.ValuationRatios.PriceChange1M and x.ValuationRatios.BookValuePerShare] self.Log('remained to select %d'%(len(filtered_fine))) sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True) sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=True) sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) stock_dict = {} for i,ele in enumerate(sortedByfactor1): rank1 = i rank2 = sortedByfactor2.index(ele) rank3 = sortedByfactor3.index(ele) score = sum([rank1*0.2,rank2*0.4,rank3*0.4]) stock_dict[ele] = score self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False) sorted_symbol = [self.sorted_stock[i][0] for i in xrange(len(self.sorted_stock))] topFine = sorted_symbol[:self.num_fine] self.long = [x.Symbol for x in sorted_symbol[:20]] self.short = [x.Symbol for x in sorted_symbol[-20:]] list = List[Symbol]() for x in topFine: list.Add(x.Symbol) return list def OnData(self, data): pass def rebalance(self): if self.first_month == 0: self.first_month += 1 return self.Liquidate() for i in self.long: self.SetHoldings(i,1.0/20) for i in self.short: self.SetHoldings(i,-1.0/20) self.reb = 1