Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.988 Tracking Error 0.168 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Custom indicator based on the Epanechnikov kernel. # Nonparametric estimation of a multidimensional probability density by V. A. Epanechnikov # http://www.mathnet.ru/links/74bd23faeeb1ccffdba0a1b221fd436c/tvp1130.pdf # https://en.wikipedia.org/wiki/Kernel_(statistics) # http://staff.ustc.edu.cn/~zwp/teach/Math-Stat/kernel.pdf # ------------------------- STOCK = 'MSFT'; PERIOD = 50; # ------------------------- import numpy as np class CustomIndicator(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 6, 24) self.SetCash(100000) self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol self.ek_filter = EpanechnikovKernel(PERIOD) self.RegisterIndicator(self.stock, self.ek_filter, Resolution.Daily) self.SetWarmUp(PERIOD) def OnData(self, data): if self.IsWarmingUp or not self.ek_filter.IsReady: return price = float(self.Securities[self.stock].Price) self.Plot("Indicator", "ek_filter", float(self.ek_filter.Value)) self.Plot("Indicator", "price", price) class EpanechnikovKernel(PythonIndicator): # Second-Order Epanechnikov kernel def __init__(self, period): self.period = period self.Time = datetime.min self.Value = 0 self.prices = np.array([]) def Update(self, input): self.prices = np.append(self.prices, input.Close)[-self.period:] if len(self.prices) != self.period: self.Value = 0 return False self.Value = self.ek(self.prices) return True def ek(self, prices): prices = np.array([]) for i in range(len(self.prices)): price = self.prices[i] prices = np.append(prices, price) return self.weighted_average(prices, self.ek_weights(len(prices))) def ek_weights(self, length): weights = np.array([]) for i in range(length): w = 0.75*(1 - (1 - i/length)**2) weights = np.append(weights, w) return weights def weighted_average(self, prices, weights): products = [] for i in range(len(prices)): products.append(prices[i] * weights[i]) return sum(products) / sum(weights)