Overall Statistics |
Total Trades 4081 Average Win 0.00% Average Loss -0.04% Compounding Annual Return -2.286% Drawdown 8.200% Expectancy -0.138 Net Profit -5.284% Sharpe Ratio -0.618 Probabilistic Sharpe Ratio 0.112% Loss Rate 17% Win Rate 83% Profit-Loss Ratio 0.03 Alpha -0.018 Beta 0.002 Annual Standard Deviation 0.029 Annual Variance 0.001 Information Ratio -0.362 Tracking Error 0.218 Treynor Ratio -10.494 Total Fees $0.00 |
from MeanVarianceOptimizationPortfolioConstructionModel import * class ForexTemplateAlgorithm(QCAlgorithm): def Initialize(self): self.SetCash(100000) self.SetStartDate(2018,1,1) self.SetEndDate(datetime.now() - timedelta(1)) self.signs = [ "USDCAD", "EURUSD", "USDCHF", "EURGBP", "GBPUSD", "USDJPY", ] self.symbols = [Symbol.Create(x, SecurityType.Forex, Market.Oanda) for x in self.signs] self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverseSelection(ManualUniverseSelectionModel(self.symbols)) self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(1), 0.01, 0.05)) self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02)) self.SetExecution(ImmediateExecutionModel())
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import * from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer from datetime import timedelta import numpy as np import pandas as pd ### <summary> ### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory. ### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns. ### </summary> class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self, rebalancingParam = Resolution.Daily, portfolioBias = PortfolioBias.LongShort, lookback = 1, period = 63, resolution = Resolution.Daily, targetReturn = 0.02, optimizer = None): """Initialize the model Args: rebalancingParam: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long) lookback(int): Historical return lookback period period(int): The time interval of history price to calculate the weight resolution: The resolution of the history price optimizer(class): Method used to compute the portfolio weights""" self.lookback = lookback self.period = period self.resolution = resolution self.portfolioBias = portfolioBias self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0) lower = 0 if portfolioBias == PortfolioBias.Long else -1 upper = 0 if portfolioBias == PortfolioBias.Short else 1 self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer self.symbolDataBySymbol = {} # If the argument is an instance of Resolution or Timedelta # Redefine rebalancingFunc rebalancingFunc = rebalancingParam if isinstance(rebalancingParam, int): rebalancingParam = Extensions.ToTimeSpan(rebalancingParam) if isinstance(rebalancingParam, timedelta): rebalancingFunc = lambda dt: dt + rebalancingParam if rebalancingFunc: self.SetRebalancingFunc(rebalancingFunc) def ShouldCreateTargetForInsight(self, insight): if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0: return False symbolData = self.symbolDataBySymbol.get(insight.Symbol) if insight.Magnitude is None: self.Algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.')) return False symbolData.Add(self.Algorithm.Time, insight.Magnitude) return True def DetermineTargetPercent(self, activeInsights): """ Will determine the target percent for each insight Args: Returns: """ targets = {} symbols = [insight.Symbol for insight in activeInsights] # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols } returns = pd.DataFrame(returns) # The portfolio optimizer finds the optional weights for the given data weights = self.optimizer.Optimize(returns) weights = pd.Series(weights, index = returns.columns) # Create portfolio targets from the specified insights for insight in activeInsights: weight = weights[str(insight.Symbol)] # don't trust the optimizer if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias: weight = 0 targets[insight] = weight return targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities super().OnSecuritiesChanged(algorithm, changes) for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) symbolData.Reset() # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback * self.period, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period) symbolData.WarmUpIndicators(history.loc[ticker]) self.symbolDataBySymbol[symbol] = symbolData class MeanVarianceSymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback, period): self.symbol = symbol self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback) self.roc.Updated += self.OnRateOfChangeUpdated self.window = RollingWindow[IndicatorDataPoint](period) def Reset(self): self.roc.Updated -= self.OnRateOfChangeUpdated self.roc.Reset() self.window.Reset() def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.roc.Update(tuple.Index, tuple.close) def OnRateOfChangeUpdated(self, roc, value): if roc.IsReady: self.window.Add(value) def Add(self, time, value): item = IndicatorDataPoint(self.symbol, time, value) self.window.Add(item) @property def Return(self): return pd.Series( data = [(1 + float(x.Value))**252 - 1 for x in self.window], index = [x.EndTime for x in self.window]) @property def IsReady(self): return self.window.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)