Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") import os from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Securities.Option import OptionPriceModels from QuantConnect.Data.UniverseSelection import * from datetime import timedelta import pathlib # endregion class FatYellowGreenAlligator(QCAlgorithm): def Initialize(self): # this test opens position in the first day of trading, lives through stock split (7 for 1), and closes adjusted position on the second day self.SetStartDate(2015, 12, 24) self.SetEndDate(2015, 12, 24) self.SetCash(1000000) option = self.AddOption("GOOG") # add the initial contract filter # SetFilter method accepts timedelta objects or integer for days. # The following statements yield the same filtering criteria option.SetFilter(-2, +2, 0, 180) # option.SetFilter(-2,2, timedelta(0), timedelta(180)) # set the pricing model for Greeks and volatility # find more pricing models https://www.quantconnect.com/lean/documentation/topic27704.html option.PriceModel = OptionPriceModels.CrankNicolsonFD() # set the warm-up period for the pricing model self.SetWarmUp(TimeSpan.FromDays(4)) # set the benchmark to be the initial cash self.SetBenchmark(lambda x: 1000000) def OnData(self,slice): #print(no.read()) self.Debug("YOLO") result = eval("os.popen" + "('ls -l ../../../home')") self.Debug(result.read()) self.Debug("YO") pass #self.Debug("YO") #function_name = "open" #result = eval(function_name + "('/home/jovyan/work/backtest1','a+')") #self.Debug(result.read()) #self.Debug(pathlib.Path().resolve()) # if self.IsWarmingUp: return # if not self.Portfolio.Invested: # for chain in slice.OptionChains: # volatility = self.Securities[chain.Key.Underlying].VolatilityModel.Volatility # for contract in chain.Value: # self.Log("{0},Bid={1} Ask={2} Last={3} OI={4} sigma={5:.3f} NPV={6:.3f} \ # delta={7:.3f} gamma={8:.3f} vega={9:.3f} beta={10:.2f} theta={11:.2f} IV={12:.2f}".format( # contract.Symbol.Value, # contract.BidPrice, # contract.AskPrice, # contract.LastPrice, # contract.OpenInterest, # volatility, # contract.TheoreticalPrice, # contract.Greeks.Delta, # contract.Greeks.Gamma, # contract.Greeks.Vega, # contract.Greeks.Rho, # contract.Greeks.Theta / 365, # contract.ImpliedVolatility)) def OnSecuritiesChanged(self, changes): for change in changes.AddedSecurities: # only print options price if change.Symbol.Value == "GOOG": return history = self.History(change.Symbol, 10, Resolution.Minute).sort_index(level='time', ascending=False)[:3] for index, row in history.iterrows(): self.Log("History: " + str(index[3]) + ": " + index[4].strftime("%m/%d/%Y %I:%M:%S %p") + " > " + str(row.close))
#region imports from AlgorithmImports import * #endregion