Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 3.789 Tracking Error 0.121 Treynor Ratio 0 Total Fees $0.00 |
class TransdimensionalTachyonCompensator(QCAlgorithm): month = 0 def Initialize(self): self.SetStartDate(2020, 10, 15) # Set Start Date self.SetEndDate(2020, 10, 27) self.SetCash(100000) # Set Strategy Cash self.trading_symbols = [] self.UniverseSettings.Resolution = Resolution.Minute self.AddUniverse(self.CoarseSelectionFunction) self.lookback_period = 60 self.spy = self.AddEquity("SPY").Symbol self.Train(self.DateRules.MonthStart(), self.TimeRules.AfterMarketOpen(self.spy, 0), self.train) def CoarseSelectionFunction(self, coarse): if self.Time.month == self.month: return Universe.Unchanged self.month = self.Time.month sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) self.trading_symbols = [ x.Symbol for x in sortedByDollarVolume if x.HasFundamentalData ][:20] return self.trading_symbols def train(self): if not self.trading_symbols: return self.Debug(len(self.trading_symbols)) # gives a length of 20 history = self.History(self.trading_symbols , self.lookback_period , Resolution.Daily) self.Debug(history.shape) # shows (1140, 5) or (1080, 5)