Overall Statistics |
Total Orders 150 Average Win 6.48% Average Loss -3.59% Compounding Annual Return 10.720% Drawdown 29.800% Expectancy 0.585 Net Profit 316.201% Sharpe Ratio 0.507 Sortino Ratio 0.41 Probabilistic Sharpe Ratio 3.010% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.80 Alpha 0.052 Beta 0.192 Annual Standard Deviation 0.134 Annual Variance 0.018 Information Ratio -0.097 Tracking Error 0.176 Treynor Ratio 0.354 Total Fees $223.91 Estimated Strategy Capacity $15000000.00 Lowest Capacity Asset MRK R735QTJ8XC9X Portfolio Turnover 1.69% |
from AlgorithmImports import * class GrowthStocksAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) # Start Date self.SetEndDate(2024, 1, 1) # End Date self.SetCash(10000) # Strategy Cash # Universe and Resolution Settings self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Schedule rebalance self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(10, 0), self.RebalancePortfolio) # Trailing stop loss percentage and dictionary for high water marks self.trailingStopLossPercent = 0.07 self.highWaterMarks = dict() # Changes tracker self.changes = None # Add VIX for market volatility self.vix = self.AddData(CBOE, "VIX").Symbol self.vixHighVolatilityThreshold = 20 # Define high volatility threshold self.canBuyEquities = True # Flag to control equity buying def CoarseSelectionFunction(self, coarse): if not self.canBuyEquities: return [] filtered_coarse = [x for x in coarse if x.DollarVolume > 1e6 and x.Price > 5] sorted_by_liquidity = sorted(filtered_coarse, key=lambda x: x.DollarVolume, reverse=True) selected_symbols = [x.Symbol for x in sorted_by_liquidity if x.Price * x.DollarVolume / x.Price > 2e9] return selected_symbols[:100] def FineSelectionFunction(self, fine): filtered_fine = [x for x in fine if x.OperationRatios.RevenueGrowth.OneYear > 0.0 and x.OperationRatios.NetIncomeGrowth.OneYear > 0.0 and x.EarningReports.BasicEPS.TwelveMonths > 0 and (x.ValuationRatios.PEGRatio > 0 and x.ValuationRatios.PEGRatio < 1.5) and x.FinancialStatements.BalanceSheet.TotalEquity.Value > 0] sorted_by_growth = sorted(filtered_fine, key=lambda x: x.OperationRatios.RevenueGrowth.OneYear, reverse=True) return [x.Symbol for x in sorted_by_growth[:10]] def RebalancePortfolio(self): if self.changes is None or len(self.changes) == 0: return weight_per_security = 1.0 / len(self.changes) for symbol in self.changes: if not self.Securities[symbol].Invested: self.SetHoldings(symbol, weight_per_security) self.highWaterMarks[symbol] = self.Securities[symbol].Price self.changes = [] # Reset the changes after rebalancing def OnSecuritiesChanged(self, changes): self.changes = [x.Symbol for x in changes.AddedSecurities] def OnData(self, data): symbolsToLiquidate = [] for symbol, highWaterMark in self.highWaterMarks.items(): # Check if the symbol has data before accessing its Close price if symbol in data and data[symbol] is not None: currentPrice = data[symbol].Close if currentPrice > highWaterMark: self.highWaterMarks[symbol] = currentPrice trailingStopPrice = highWaterMark * (1 - self.trailingStopLossPercent) if currentPrice < trailingStopPrice: symbolsToLiquidate.append(symbol) for symbol in symbolsToLiquidate: self.Liquidate(symbol) del self.highWaterMarks[symbol] # VIX-based market volatility handling if data.ContainsKey(self.vix): currentVixValue = data[self.vix].Close isHighVolatility = currentVixValue > self.vixHighVolatilityThreshold if isHighVolatility: self.AdjustEquityExposure(False) # Adjust for high volatility else: self.AdjustEquityExposure(True) # Reset for normal conditions def AdjustEquityExposure(self, canBuy): self.canBuyEquities = canBuy if not canBuy: # Exit profitable positions during high volatility for symbol, security in self.Securities.items(): if security.Invested: currentPrice = security.Price buyPrice = security.Holdings.AveragePrice if currentPrice > buyPrice: self.Liquidate(symbol)