Overall Statistics |
Total Trades 24 Average Win 0.15% Average Loss -0.09% Compounding Annual Return -2.459% Drawdown 0.300% Expectancy -0.217 Net Profit -0.082% Sharpe Ratio -0.71 Probabilistic Sharpe Ratio 36.174% Loss Rate 70% Win Rate 30% Profit-Loss Ratio 1.61 Alpha 0.044 Beta -0.094 Annual Standard Deviation 0.026 Annual Variance 0.001 Information Ratio -5.364 Tracking Error 0.127 Treynor Ratio 0.195 Total Fees $24.00 |
from universe_selection_model import MyUniverseModel class TestAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 5, 28) self.SetEndDate(2018, 6, 9) self.SetWarmUp(10) self.SetCash(10000) # Universe selection settings self.UniverseSettings.Resolution = Resolution.Daily self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Adjusted self.UniverseSettings.ExtendedMarketHours = False self.SetUniverseSelection(MyUniverseModel()) def OnSecuritiesChanged(self, changes): self.changes = changes for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) for security in changes.AddedSecurities: self.SetHoldings(security.Symbol, 0.1)
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class MyUniverseModel(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(False) def SelectCoarse(self, algorithm, coarse): sortedByDollarVolume = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True) symbols_by_price = [c.Symbol for c in sortedByDollarVolume if c.Price > 10] algorithm.filteredByPrice = symbols_by_price[:8] return algorithm.filteredByPrice def SelectFine(self, algorithm, fine): return self.symbols