Overall Statistics |
Total Trades 100 Average Win 14.83% Average Loss -4.87% Compounding Annual Return 69.573% Drawdown 23.100% Expectancy 1.507 Net Profit 2282.594% Sharpe Ratio 1.717 Loss Rate 38% Win Rate 62% Profit-Loss Ratio 3.04 Alpha 0.387 Beta 1.202 Annual Standard Deviation 0.343 Annual Variance 0.118 Information Ratio 1.461 Tracking Error 0.288 Treynor Ratio 0.49 Total Fees $11506.46 |
using System; using System.Linq; using QuantConnect.Indicators; using QuantConnect.Models; namespace QuantConnect.Algorithm.Examples { /// <summary> /// /// QuantConnect University: EMA + SMA Cross /// /// In this example we look at the canonical 20/50 day moving average cross. This algorithm /// will go long when the 20 crosses above the 50 and will liquidate when the 20 crosses /// back below the 50. // Vats Changes ----------- // Simulating - 10/1 DMA cross //------------------------------------- /// </summary> public class QCUMovingAverageCross : QCAlgorithm { private const string Symbol = "VXX"; private ExponentialMovingAverage fast; private ExponentialMovingAverage slow; private SimpleMovingAverage[] ribbon; public override void Initialize() { // set up our analysis span SetStartDate(2009, 07, 01); SetEndDate(2015, 07, 1); // request SPY data with minute resolution AddSecurity(SecurityType.Equity, Symbol, Resolution.Minute); // create a 15 day exponential moving average fast = EMA(Symbol, 5, Resolution.Daily); // create a 30 day exponential moving average slow = EMA(Symbol, 10, Resolution.Daily); // the following lines produce a simple moving average ribbon, this isn't // actually used in the algorithm's logic, but shows how easy it is to make // indicators and plot them! // note how we can easily define these indicators to receive hourly data int ribbonCount = 7; int ribbonInterval = 15*8; ribbon = new SimpleMovingAverage[ribbonCount]; for(int i = 0; i < ribbonCount; i++) { ribbon[i] = SMA(Symbol, (i + 1)*ribbonInterval, Resolution.Hour); } } private DateTime previous; public void OnData(TradeBars data) { // a couple things to notice in this method: // 1. We never need to 'update' our indicators with the data, the engine takes care of this for us // 2. We can use indicators directly in math expressions // 3. We can easily plot many indicators at the same time // wait for our slow ema to fully initialize if (!slow.IsReady) return; // only once per day if (previous.Date == data.Time.Date) return; // define a small tolerance on our checks to avoid bouncing const decimal tolerance = 0.00015m; var holdings = Portfolio[Symbol].Quantity; // Vats' changes - Short here .we only want to go long if we're currently short or flat if (holdings >= 0) { // if the slow is greater than the fast, we'll go short if (slow > fast * (1 + tolerance)) { Log("SELL >> " + Securities[Symbol].Price); SetHoldings(Symbol, -1.0); } } // Vats' changes - Long here . We only want to liquidate if we're currently short // if the slow is less than the fast we'll liquidate our short if (holdings < 0 && slow < fast) { Log("BUY >> " + Securities[Symbol].Price); Liquidate(Symbol); } Plot(Symbol, "Price", data[Symbol].Price); Plot("Ribbon", "Price", data[Symbol].Price); // easily plot indicators, the series name will be the name of the indicator Plot(Symbol, fast, slow); Plot("Ribbon", ribbon); previous = data.Time; } } }