Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.702 Tracking Error 0.142 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * # endregion # Imports from keras.models import Sequential from keras.layers import Activation, Dense from keras.utils.generic_utils import serialize_keras_object import json import numpy as np class PensiveYellowGreenBison(QCAlgorithm): def Initialize(self): # # # # # User input area # # # # # # Set Start Date self.SetStartDate(2013, 1, 1) # Set Strategy Cash self.SetCash(100000) # Stop loss percent self.stop_loss_percent = 2 # Stock to trade stock_to_trade = "MSFT" # # # # # End user input area # # # # # # Add stock self.stock_symbol = self.AddEquity(stock_to_trade, Resolution.Daily).Symbol # SMA self.symbol_SMA = self.SMA(self.stock_symbol, 10, Resolution.Daily) # EMA self.symbol_EMA = self.EMA(self.stock_symbol, 10, Resolution.Daily) # RSI self.symbol_RSI = self.RSI(self.stock_symbol, 14, Resolution.Daily) # Storage self.storage = {"sum_OHLC":[],"SMA":[], "EMA":[], "RSI":[], "close":[]} # Read serialized model model_serialized = self.ObjectStore.Read("model_key") # Config model_serialized_config = json.loads(model_serialized)['config'] # Convert back to model self.trained_model = Sequential.from_config(model_serialized_config) # Saved average of values at entry self.saved_average = 0 # Set warmup self.SetWarmup(200) def OnData(self, data: Slice): # If SMA, EMA and RSI ready if self.symbol_RSI.IsReady: # Open open_price = self.Securities[self.stock_symbol].Open # High high = self.Securities[self.stock_symbol].High # Low low = self.Securities[self.stock_symbol].Low # Close close = self.Securities[self.stock_symbol].Close # Store values self.storage["sum_OHLC"].append(open_price + high + low + close) self.storage["SMA"].append(self.symbol_SMA.Current.Value) self.storage["EMA"].append(self.symbol_EMA.Current.Value) self.storage["RSI"].append(self.symbol_RSI.Current.Value) self.storage["close"].append(close) # Cut length if len(self.storage["sum_OHLC"]) > 100: self.storage["sum_OHLC"] = self.storage["sum_OHLC"][-100:] self.storage["SMA"] = self.storage["SMA"][-100:] self.storage["EMA"] = self.storage["EMA"][-100:] self.storage["RSI"] = self.storage["RSI"][-100:] self.storage["close"] = self.storage["close"][-100:] # If not warming up if not self.IsWarmingUp: # If not invested if not self.Portfolio.Invested: # Normalize storage values sum_OHLC_normalized = [i/max(self.storage["sum_OHLC"]) for i in self.storage["sum_OHLC"]] EMA_normalized = [i/max(self.storage["EMA"]) for i in self.storage["EMA"]] SMA_normalized = [i/max(self.storage["SMA"]) for i in self.storage["SMA"]] RSI_normalized = [i/max(self.storage["RSI"]) for i in self.storage["RSI"]] close_normalized = [i/max(self.storage["close"]) for i in self.storage["close"]] # Reshape sum_OHLC_normalized_reshaped = np.array(sum_OHLC_normalized).reshape(len(sum_OHLC_normalized),1) EMA_normalized_reshaped = np.array(EMA_normalized).reshape(len(EMA_normalized),1) SMA_normalized_reshaped = np.array(SMA_normalized).reshape(len(SMA_normalized),1) RSI_normalized_reshaped = np.array(RSI_normalized).reshape(len(RSI_normalized),1) # Predict sum_OHLC_predict = self.trained_model.predict(sum_OHLC_normalized_reshaped) EMA_predict = self.trained_model.predict(EMA_normalized_reshaped) SMA_predict = self.trained_model.predict(SMA_normalized_reshaped) RSI_predict = self.trained_model.predict(RSI_normalized_reshaped) # Get most recent values predicted_current_close_from_sum_OHLC = sum_OHLC_predict[-1][0][0] predicted_current_close_from_EMA = EMA_predict[-1][0][0] predicted_current_close_from_SMA = SMA_predict[-1][0][0] predicted_current_close_from_RSI = RSI_predict[-1][0][0] current_close = close_normalized[-1] # If current close lower than all predicted values if ( current_close < predicted_current_close_from_sum_OHLC and current_close < predicted_current_close_from_EMA and current_close < predicted_current_close_from_SMA and current_close < predicted_current_close_from_RSI ): # Buy with 100% portfolio cash self.SetHoldings(self.stock_symbol, 1) # Save average self.saved_average = (predicted_current_close_from_sum_OHLC + predicted_current_close_from_EMA + predicted_current_close_from_SMA + predicted_current_close_from_RSI) / 4 # Else else: # Get normalized close prices close_normalized = [i/max(self.storage["close"]) for i in self.storage["close"]] # If current price under saved average if close_normalized[-1] > self.saved_average: # Sell self.Liquidate(tag = "Normalized value exceeded predicted average at entry") # Else else: # If current price lower than average price by stop loss percent if close < self.Portfolio[self.stock_symbol].AveragePrice * (1 - (0.01 * self.stop_loss_percent)): # Sell self.Liquidate(tag = "Stop loss")