Overall Statistics |
Total Trades 2112 Average Win 3.37% Average Loss -2.48% Compounding Annual Return 51.262% Drawdown 48.500% Expectancy 0.138 Net Profit 1332.215% Sharpe Ratio 1.047 Loss Rate 52% Win Rate 48% Profit-Loss Ratio 1.36 Alpha 0.422 Beta 1.021 Annual Standard Deviation 0.527 Annual Variance 0.277 Information Ratio 0.84 Tracking Error 0.506 Treynor Ratio 0.54 Total Fees $11922.76 |
""" VIX Strategy using hourly RSI (which is used as momentum indicator rather than a contrarian) """ from clr import AddReference # .NET Common Language Runtime (CLR) <- http://pythonnet.github.io/ AddReference("System") AddReference("QuantConnect.Algorithm") # to load an assembly use AddReference AddReference("QuantConnect.Common") from System import * # CLR namespaces to be treatedas Python packages from QuantConnect import * from QuantConnect.Algorithm import * # from QuantConnect.Python import PythonQuandl # quandl data not CLOSE # from QuantConnect.Python import PythonData # custom data import numpy as np; import pandas as pd from datetime import datetime, timedelta import decimal import talib class VIXbyRSI(QCAlgorithm): def __init__(self): self._period = 6 self.perc_pos = 1.0 # just need something ~0.3 for enough fun def Initialize(self): self.SetCash(10000) self.SetStartDate(2011,5,1) self.SetEndDate(datetime.now().date() - timedelta(1)) self.first_time = True self.RSI_previous = None self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.XIV = self.AddEquity("XIV", Resolution.Hour).Symbol self.VXX = self.AddEquity("VXX", Resolution.Hour).Symbol self.spy = self.AddEquity("SPY", Resolution.Hour).Symbol self._RSI = self.RSI(self.XIV, self._period, MovingAverageType.Simple, Resolution.Hour) self.Plot("Indicators", self._RSI) self.Schedule.On(self.DateRules.EveryDay(self.XIV), self.TimeRules.AfterMarketOpen(self.XIV, 1), Action(self.rebalance)) self.Schedule.On(self.DateRules.EveryDay(self.XIV), self.TimeRules.AfterMarketOpen(self.XIV, 121), Action(self.rebalance)) self.Schedule.On(self.DateRules.EveryDay(self.XIV), self.TimeRules.AfterMarketOpen(self.XIV, 241), Action(self.rebalance)) self.Schedule.On(self.DateRules.EveryDay(self.XIV), self.TimeRules.AfterMarketOpen(self.XIV, 361), Action(self.rebalance)) def OnData(self, data): # we may insert some stop-losses in here pass def rebalance(self): # every two hours # wait if still open orders if len(self.Transactions.GetOpenOrders())>0: return # wait for i. indicator warm up if (not self._RSI.IsReady): if self.first_time: # update RSI previous self.RSI_previous = self._RSI.Current.Value self.first_time = False return # update RSI RSI_curr = self._RSI.Current.Value self.Log(str(self.Time)+" RSI: "+ str(RSI_curr)) # get current qnties XIV_qnty = self.Portfolio[self.XIV].Quantity VXX_qnty = self.Portfolio[self.VXX].Quantity # XIV positions if self.RSI_previous > 85 and RSI_curr <= 85: # down and below 85: SELL if XIV_qnty > 0: self.Liquidate(self.XIV) if VXX_qnty > 0: self.Liquidate(self.VXX) if self.RSI_previous < 70 and RSI_curr >= 70: # up and above 70: BUY if XIV_qnty == 0: self.SetHoldings(self.XIV, self.perc_pos) if VXX_qnty > 0: self.Liquidate(self.VXX) # VXX positions if self.RSI_previous > 30 and RSI_curr <= 30: # down and below 30: BUY if XIV_qnty > 0: self.Liquidate(self.XIV) if VXX_qnty == 0: self.SetHoldings(self.VXX, self.perc_pos) if self.RSI_previous < 15 and RSI_curr >= 15: # up and above 15: SELL if VXX_qnty > 0: self.Liquidate(self.VXX) if XIV_qnty == 0: self.SetHoldings(self.XIV, self.perc_pos) self.RSI_previous = RSI_curr