Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class VerticalCalibratedRegulators(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 5, 20) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 5 self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.smaDictionary = {} self.selectedSymbols = [] def OnData(self, data): pass # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True) ## Retrieve 20 days of historical data for each symbol symbols = [x.Symbol for x in sortedByPeRatio] history = self.History(symbols, 20, Resolution.Daily) ## Iterate through symbols for symbol in symbols: ## Find hsitory for specific symbol symbolVolumeHistory = history.loc[str(symbol)] ## Create SMA for symbol and register it with algorithm symbolSMA = SimpleMovingAverage(20) ## Iterate through historical data for tuple in symbolVolumeHistory.itertuples(): ## Update SMA with data time and volume symbolSMA.Update(tuple.Index, tuple.volume) self.Debug(f'Updating {symbol.Value} SMA...') ## Add SMA to dictionary so you can access it later self.smaDictionary[symbol] = symbolSMA ## Perform SMA filtering conditions and select/return the symbols you want to add to your universe ## Fine Selection will use only these ones # self.selectedSymbols = .... # return self.selectedSymbols return symbols