Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from QuantConnect.Data import SubscriptionDataSource from QuantConnect.Python import PythonData from datetime import date, timedelta, datetime import decimal import numpy as np import math import json import csv class CustomDataAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 8) self.SetEndDate(2014, 7, 25) self.SetCash(100000) # Define the symbol and "type" of our generic data: self.AddData(AlphaVantageVIX, "VIX") def OnData(self, data): if "VIX" not in data: self.Log("NOT DATA") return #self.today.NiftyPrice = data["NIFTY"].Close self.Log(str(data["VIX"].Close)) class AlphaVantageVIX(PythonData): def GetSource(self, config, date, isLiveMode): #Data with oldest data at the top return SubscriptionDataSource("http://monktonenterprises.com/daily_VIX_reversed.csv", SubscriptionTransportMedium.RemoteFile); #Data with newest data at the top #return SubscriptionDataSource("http://monktonenterprises.com/daily_VIX.csv", SubscriptionTransportMedium.RemoteFile); def Reader(self, config, line, date, isLiveMode): if not (line.strip() and line[0].isdigit()): return None index = AlphaVantageVIX(); index.Symbol = config.Symbol try: # Example File Format: # Date, Open High Low Close Volume Turnover # 2011-09-13 7792.9 7799.9 7722.65 7748.7 116534670 6107.78 data = line.split(',') index.Time = datetime.strptime(data[0], "%Y-%m-%d") index.Value = decimal.Decimal(data[4]) index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) except ValueError: # Do nothing return None return index