Overall Statistics |
Total Trades 90 Average Win 0.51% Average Loss -0.48% Compounding Annual Return 7.955% Drawdown 5.600% Expectancy 0.140 Net Profit 2.936% Sharpe Ratio 0.75 Probabilistic Sharpe Ratio 42.499% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 1.05 Alpha 0.2 Beta -0.24 Annual Standard Deviation 0.093 Annual Variance 0.009 Information Ratio -1.936 Tracking Error 0.242 Treynor Ratio -0.292 Total Fees $1380.60 Estimated Strategy Capacity $4500000.00 Lowest Capacity Asset IEFA VAZ3WCEWMP2D |
''' Left to do - ---1. 2 Day close rule- not closing, also make it close at the end of the 2nd day 2. Stoploss didnt work 2020-08-05 15:59:00 : Entering SRNE VL1GER10SC4L on {self.Time}...Entry Price: 13.74, Take Profit: 11.49, StopLoss: 14.865 Shoud've hit stoploss @ 14.87 on 8/7/2020 but holds position entire time ---3. Stoploss should be latest_daily_bar.High + 0.5 * atr vs self.entry_price + 0.5 * atr ---4. Allow for 2 positions at a time @ 15% equity each ''' from SymbolData import SymbolData from TradeManagement import TradeManagement class CryingBlueFlamingo(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 5, 1) # Set Start Date self.SetEndDate(2020, 9, 15) # Set End Date self.SetCash(1000000) # Set Strategy Cash self.max_positions = 2 self.total_short_margin_allocation = 0.30 self.universe_size = 200 self.benchmark = "SPY" self.AddEquity(self.benchmark) # fast way of modelling margin of shorting # SetHoldings(0.5) -> 50% of the 30% allowed is allocated aka 15% is allocated # self.Settings.FreePortfolioValuePercentage = 0.30 self.AddUniverse(self.CoarseSelection) self.UniverseSettings.Resolution = Resolution.Minute self.symbol_data = {} self.trade_managers = {} # Want to open a short position before the market closes self.Schedule.On(self.DateRules.EveryDay(self.benchmark), self.TimeRules.BeforeMarketClose(self.benchmark, 1), self.Rebalance) def Rebalance(self): '''Fires everyday 1 minute before market close''' for symbol, symbol_data in self.symbol_data.items(): if not symbol_data.IsReady: continue #if symbol.Value == 'SRNE': #self.Debug(f"SRNE: {self.Portfolio[symbol].Invested}, {self.Portfolio[symbol].Quantity}, {self.trade_managers[symbol].days_active}") signal = self.CalculateSignal(symbol_data) ''' hammer_signal = self.CalculateSignal(symbol_data) ''' trade_manager = self.trade_managers[symbol] number_of_open_positions = len([symbol for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]) # Go short if there is a Hanging Man Signal if signal and not self.Portfolio[symbol].Invested and number_of_open_positions < self.max_positions: # trade_manager = self.trade_managers[symbol] #trade_manager.CreateEntry(-10) portfolio_allocation = self.total_short_margin_allocation / self.max_positions trade_manager.CreateEntry(-portfolio_allocation) self.Debug(f"{symbol}, {self.Portfolio[symbol].Invested}") if self.Portfolio[symbol].Invested: trade_manager.days_active += 1 self.Debug(f"{symbol} : days active: {trade_manager.days_active}") ''' # Go long if there is a hammer signal if hammer_signal: trade_manager = self.trade_managers[symbol] trade_manager.CreateEntry(10) ''' def OnData(self, data): for symbol, trade_manager in self.trade_managers.items(): if not self.Portfolio[symbol].Invested: continue current_price = self.Securities[symbol].Price stop_loss = trade_manager.stop_loss take_profit = trade_manager.take_profit days_active = trade_manager.days_active if current_price > stop_loss or current_price < take_profit: trade_manager.Liquidate() if days_active is 3: trade_manager.Liquidate() #trade_manager.OnMarketCloseLiquidate() self.Debug(f"{symbol} -- held for {days_active}...Liquidating at market close") #Finds a Red Hanging Man candle whose High is higher than the prior 5 days highs, and above the 20SMA. def CalculateSignal(self, symbol_data): # Daily bars bars = symbol_data.bar_window # Minute bars # try: # if len(symbol_data.minute_bar_window) == 0: # print(f"ERROR!!! {symbol_data.symbol} has no bar data") # return False # except: # print(f"{symbol_data.symbol} --- {symbol_data.minute_bar_window} -- {symbol_data.sma.Current.Value}") # return False # try: symbol_data.CalculateOHLC() latest_daily_bar = symbol_data.summary_bar if latest_daily_bar is None: return False # except: # self.Debug(f"ERROR!!!! - {symbol_data.symbol}") # self.Debug(f"{len(list(symbol_data.minute_bar_window))}") # return False if len(list(symbol_data.minute_bar_window)) != 0: max_price = max([x.High for x in list(symbol_data.minute_bar_window)]) low_price = min([x.Low for x in list(symbol_data.minute_bar_window)]) else: self.Debug(f"{symbol_data.symbol} -- {len(list(symbol_data.minute_bar_window))}") return False # latest_consolidator = symbol_data.todays_minute_bars[0] # first_consolidator = symbol_data.todays_minute_bars[-1] number_of_bars_today = len(symbol_data.todays_minute_bars) # checking if the high of the latest daily bar is greater than the high of all following bars uptrend = all([latest_daily_bar.High > bar.High for bar in list(bars)[:6]]) downtrend = all([latest_daily_bar.Low < bar.Low for bar in list(bars)[:6]]) red_bar = latest_daily_bar.Close < latest_daily_bar.Open #green_bar = latest_daily_bar.Close > latest_daily_bar.Open if red_bar: body = abs(latest_daily_bar.Open - latest_daily_bar.Close) shadow = abs(latest_daily_bar.Close - latest_daily_bar.Low) wick = abs(latest_daily_bar.High - latest_daily_bar.Open) hanging_man = (shadow > 2 * body) and (wick < 0.3 * body) ''' if green_bar: body = abs(latest_daily_bar.Close - latest_daily_bar.Open) shadow = abs(latest_daily_bar.Open - latest_daily_bar.Low) wick = abs(latest_daily_bar.High - latest_daily_bar.Close) dayATR = abs(latest_daily_bar.High - latest_daily_bar.Low) green_hammer = (shadow > 2 * body) and (wick < 0.3 * body) ''' sma = (sum([b.Close for b in list(bars)[:-1]]) + latest_daily_bar.Close) / 10 # latest_market_price price = self.Securities[symbol_data.symbol].Price above_sma = latest_daily_bar.Close > sma below_sma = latest_daily_bar.Close < sma #Hanging Man Signal signal = red_bar and uptrend and hanging_man and above_sma ''' #Hammer Signal #hammer_signal = green_bar and downtrend and green_hammer and below_sma ''' if signal: self.Debug(f" Signal Candle for {symbol_data.symbol} on {self.Time} is - Body: {body} , Wick: {wick} , shadow: {shadow}") self.Debug(f"Minute Bar Consolidator OHLC for Signal Day {symbol_data.symbol} on {self.Time} is {latest_daily_bar}") return signal ''' if hammer_signal: return hammer_signal ''' def CoarseSelection(self, coarse): # list of ~8500 stocks (coarse data) # coarse is a list of CoarseFundamental objects # Descending order sorted_by_liquidity = sorted(coarse, key=lambda c:c.DollarVolume, reverse=True) most_liquid_coarse = sorted_by_liquidity[:self.universe_size] # needs to return a list of Symbol object most_liquid_symbols = [c.Symbol for c in most_liquid_coarse if c.Symbol.Value != "WPI R735QTJ8XC9XI"] return most_liquid_symbols def OnSecuritiesChanged(self, changes): #Fires after universe selection if there are any changes for security in changes.AddedSecurities: symbol = security.Symbol if symbol not in self.symbol_data and symbol.Value != self.benchmark: self.symbol_data[symbol] = SymbolData(self, symbol) self.trade_managers[symbol] = TradeManagement(self, symbol) # for security in changes.RemovedSecurities: # symbol = security.Symbol # if self.Portfolio[symbol].Invested: # self.trade_managers[symbol].Liquidate() # if symbol in self.symbol_data: # symbol_data_object = self.symbol_data.pop(symbol, None) # symbol_data_object.KillDailyConsolidator() # symbol_data_object.KillMinuteConsolidator() # if symbol in self.trade_managers: # self.trade_managers.pop(symbol, None) # def RemoveSecurityFromDictionaries(self, symbol): # if symbol in self.symbol_data: # symbol_data_object = self.symbol_data.pop(symbol, None) # symbol_data_object.KillDailyConsolidator() # symbol_data_object.KillMinuteConsolidator() # if symbol in self.trade_managers: # self.trade_managers.pop(symbol, None)
from SymbolData import * class TradeManagement: def __init__(self, algorithm, symbol): self.algorithm = algorithm self.symbol = symbol self.days_active = 0 self.entry_price = None self.stop_loss = None self.take_profit = None def CreateEntry(self, quantity): # initial entry market order self.algorithm.SetHoldings(self.symbol, quantity) current_price = self.algorithm.Securities[self.symbol].Price symbol_data = self.algorithm.symbol_data[self.symbol] # Update our 1 period ATR with latest bar, so we have today's range symbol_data.atr.Update(symbol_data.summary_bar) atr = symbol_data.atr.Current.Value self.entry_price = current_price summary_bar = self.algorithm.symbol_data[self.symbol].summary_bar self.stop_loss = summary_bar.High + 0.5 * atr self.take_profit = self.entry_price - 1 * atr self.algorithm.Debug(f"Entering {self.symbol} on {{self.Time}}...Entry Price: {current_price}, Take Profit: {self.take_profit}, StopLoss: {self.stop_loss}") def Liquidate(self): self.algorithm.Debug(f"Liquidating.. {self.symbol}....{self.algorithm.Securities[self.symbol].Price}") self.algorithm.Liquidate(self.symbol) self.entry_price = None self.stop_loss = None self.take_profit = None self.days_active = 0 # in_universe = False # # checking if symbol shows up in any of the defined universes # for universe in self.algorithm.UniverseManager.Values: # if self.symbol in universe.Members.Keys: # in_universe = True # # if that symbol does not exist in any universe, # # we remove subscriptions and remove from list after liquidation # if not in_universe: # self.algorithm.RemoveSecurityFromDictionaries(self.symbol)
class SymbolData: '''Containers to hold relevant data for each symbol''' def __init__(self, algorithm, symbol): self.algorithm = algorithm self.symbol = symbol # self.minute_consolidator = self.algorithm.SubscriptionManager.ResolveConsolidator(Resolution.Minute) self.minute_consolidator = TradeBarConsolidator(timedelta(minutes=1)) self.algorithm.SubscriptionManager.AddConsolidator(self.symbol, self.minute_consolidator) self.minute_consolidator.DataConsolidated += self.OnMinuteBar # defines daily consolidator and then registers to receive data self.daily_consolidator = TradeBarConsolidator(timedelta(days=1)) self.algorithm.SubscriptionManager.AddConsolidator(symbol, self.daily_consolidator) self.daily_consolidator.DataConsolidated += self.OnDailyBar # 1. instantiantes a SimpleMovingAverage object # 2. subscribes it to receive data self.sma = SimpleMovingAverage(10) # Test 10 vs 20 self.algorithm.RegisterIndicator(symbol, self.sma, self.daily_consolidator) self.atr = AverageTrueRange(1) self.algorithm.RegisterIndicator(symbol, self.atr, self.daily_consolidator) # holds recent bars self.bar_window = RollingWindow[TradeBar](10) self.minute_bar_window = RollingWindow[TradeBar](500) self.summary_bar = None self.WarmUpIndicators() def WarmUpIndicators(self): # returns a dataframe history = self.algorithm.History(self.symbol, 20, Resolution.Daily) for bar in history.itertuples(): time = bar.Index[1] open = bar.open high = bar.high low = bar.low close = bar.close volume = bar.volume trade_bar = TradeBar(time, self.symbol, open, high, low, close, volume) self.sma.Update(time, close) self.atr.Update(trade_bar) self.bar_window.Add(trade_bar) def OnDailyBar(self, sender, bar): #Fires each time our daily_consolidator produces a bar that bar is passed in through the bar parameter # save that bar to our rolling window self.bar_window.Add(bar) def OnMinuteBar(self, sender, bar): #Fires each time our minute_consolidator produces a bar that bar is passed in through the bar parameter # save that bar to our rolling window self.minute_bar_window.Add(bar) def KillDailyConsolidator(self): self.algorithm.SubscriptionManager.RemoveConsolidator(self.symbol, self.daily_consolidator) def KillMinuteConsolidator(self): self.algorithm.SubscriptionManager.RemoveConsolidator(self.symbol, self.minute_consolidator) def IsReady(self): return self.sma.IsReady and self.atr.IsReady and self.bar_window.IsReady and self.minute_bar_window.IsReady def CalculateOHLC(self): # Rolling window open bars = list(self.minute_bar_window) bars_sorted = sorted(bars, key=lambda b:b.Time, reverse=True) todays_bars = [bar for bar in bars if bar.Time.day == self.algorithm.Time.day] # desecending in time, larger indices -> further in past todays_bars_sorted = sorted(todays_bars, key=lambda b:b.Time, reverse=True) if len(todays_bars_sorted) == 0: self.algorithm.Debug(f"{self.symbol} -- {len(todays_bars_sorted)}") # self.summary_bar = None history = self.algorithm.History(self.symbol, 390, Resolution.Minute) if history.empty: return False open = history.iloc[0]['open'] close = history.iloc[-1]['close'] high = history['high'].max() low = history['low'].min() volume = history['volume'].sum() time = datetime(self.algorithm.Time.year, self.algorithm.Time.month, self.algorithm.Time.day, 9, 30, 0) period = TimeSpan.FromMinutes(390) self.algorithm.Debug(f"{time} - {self.symbol} - {open} {high} {low} {close} {volume}") self.summary_bar = TradeBar(time, self.symbol, open, high, low, close, volume) return opening_bar = todays_bars_sorted[-1] open = opening_bar.Open # Rolling window close closing_bar = todays_bars_sorted[0] close = closing_bar.Close # High and low over period high = max([x.High for x in todays_bars_sorted]) low = min([x.Low for x in todays_bars_sorted]) # Calculate volume volume = sum([x.Volume for x in todays_bars_sorted]) # Time time = opening_bar.Time period = TimeSpan.FromMinutes((self.algorithm.Time - time).seconds // 60) # Create a summary trade bar self.summary_bar = TradeBar(time, self.symbol, open, high, low, close, volume, period) @property def todays_minute_bars(self): bars = list(self.minute_bar_window) # self.Debug(f"Filtering bars for {self.symbol} ON....{self.algorithm.Time.day}") todays_bars = [bar for bar in bars if bar.Time.day == self.algorithm.Time.day] # desecending in time, larger indices -> further in past todays_bars_sorted = sorted(todays_bars, key=lambda b:b.Time, reverse=True) return todays_bars_sorted