Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class KalmanFilterAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2018, 11, 28) #Set Start Date self.SetEndDate(2018, 11, 30) #Set End Date self.SetCash(25000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.symbol = "NVDA" self.AddEquity(self.symbol, Resolution.Minute) self.heikin_ashi = HeikinAshi() def OnData(self, data): if not data.ContainsKey(self.symbol): return if data[self.symbol] is None: self.Log("oh shit " + self.symbol + " data is none at " + str(self.Time)) return self.heikin_ashi.Update(data[self.symbol]) if self.heikin_ashi.IsReady: lastPrice = float(str(self.heikin_ashi.Close))