Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from AlgorithmImports import * from datetime import timedelta, datetime, time import pandas as pd class DataTracker(object): def __init__(self, symbol: Symbol, prior_close): self.Symbol = symbol self.prior_close = prior_close self.pre_market_vol = 0.0 self.market_open_price = 0.0 self.asset = None def add_pre_market_vol(self, volume): self.pre_market_vol += volume def __str__(self): return f"{self.Symbol.Value} - prior close: {self.prior_close} - pre vol: {self.pre_market_vol} - market open: {self.market_open_price}" class MicroCapTrades(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 12, 31) # Set Start Date self.SetEndDate(2021, 12, 31) # Set Start Date self.SetCash(60000) # Set Strategy Cash self.SetTimeZone("America/New_York") self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw self.UniverseSettings.ExtendedMarketHours = True self.AddUniverse(self.Coarse, self.Fine) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) self.lot_size_dollar = 5000.0 self._data_tracker = {} self.spy = self.AddEquity("SPY", Resolution.Minute, Market.USA, True, 1, extendedMarketHours=True) self.spy.SetDataNormalizationMode(DataNormalizationMode.Raw) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 1), self.CloseAllPosition) def Coarse(self, coarse): self.Debug(f"Coarse is run with {len([x.Symbol for x in coarse])} tickers entered") filtered = [ x.Symbol for x in coarse if x.HasFundamentalData and x.DollarVolume > 0 and x.Value >= 1 and x.Value <= 20] self._data_tracker = { x.Symbol: DataTracker(x.Symbol, x.Value) for x in coarse if x.Symbol in filtered} return filtered def Fine(self, fine): self.Debug(f"Fine is run with {len([x.Symbol for x in fine])} tickers entered") small_cap = [x.Symbol for x in fine if x.MarketCap <= 300 * 1e6] for s in list(self._data_tracker.keys()): if s not in small_cap: self._data_tracker.pop(s) for symbol in small_cap: self._data_tracker[symbol].asset = self.AddEquity(symbol, Resolution.Minute, Market.USA, True, 1, True) self._data_tracker[symbol].asset.SetDataNormalizationMode(DataNormalizationMode.Raw) return [] def OnData(self, data: Slice): tradeBars = data.Bars ticker_fed = [s for s in tradeBars.Keys] if self.Time.minute == 0: self.Debug(f"OnData with {len(ticker_fed)} tickers in data feed") if self.Time.hour < 9 or (self.Time.hour == 9 and self.Time.minute <= 30): for s in self._data_tracker: if s in tradeBars: self._data_tracker[s].add_pre_market_vol( tradeBars[s].Volume) return if self.Time.hour == 9 and self.Time.minute == 31: has_no_data = [ self._remove_tickers(s) for s in list(self._data_tracker.keys()) if s not in tradeBars] has_event = [ self._remove_tickers(s) for s in list(self._data_tracker.keys()) if data.Dividends.ContainsKey(s) or data.Splits.ContainsKey(s) or data.Delistings.ContainsKey(s) or data.SymbolChangedEvents.ContainsKey(s)] no_gap_up = [ self._remove_tickers(s) for s in list(self._data_tracker.keys()) if tradeBars[s].Open < self._data_tracker[s].prior_close * 1.19] no_vol_1mm = [ self._remove_tickers(s) for s in list(self._data_tracker.keys()) if self._data_tracker[s].pre_market_vol < 1e6] if self._data_tracker: self.Debug(f"{len(self._data_tracker)} tickers are selected to trade") def OnSecuritiesChanged(self, changes: SecurityChanges): active_symbol = [s.Symbol for s in self.ActiveSecurities.Values] self.Debug(f"OnSecuritiesChanged called with {len(active_symbol)} tickers in ActiveSecurities") def CloseAllPosition(self): if self.Portfolio.Invested: self.Liquidate() def _remove_tickers(self, s): self.RemoveSecurity(s) return self._data_tracker.pop(s)