Overall Statistics |
Total Orders 3 Average Win 0% Average Loss -1.01% Compounding Annual Return 260.532% Drawdown 2.200% Expectancy -1 Start Equity 100000 End Equity 101653.13 Net Profit 1.653% Sharpe Ratio 8.454 Sortino Ratio 0 Probabilistic Sharpe Ratio 66.805% Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.095 Beta 1.007 Annual Standard Deviation 0.224 Annual Variance 0.05 Information Ratio -33.464 Tracking Error 0.002 Treynor Ratio 1.881 Total Fees $10.80 Estimated Strategy Capacity $27000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 59.91% |
# region imports from AlgorithmImports import * # endregion class AlertBlueScorpion(QCAlgorithm): def initialize(self): '''initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # Set requested data resolution self.universe_settings.resolution = Resolution.MINUTE self.set_start_date(2013,10,7) #Set Start Date self.set_end_date(2013,10,11) #Set End Date self.set_cash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data # Forex, CFD, Equities Resolutions: Tick, Second, Minute, Hour, Daily. # Futures Resolution: Tick, Second, Minute # Options Resolution: Minute Only. symbols = [ Symbol.create("SPY", SecurityType.EQUITY, Market.USA) ] # set algorithm framework models self.set_universe_selection(ManualUniverseSelectionModel(symbols)) self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(minutes = 20), 0.025, None)) # We can define how often the EWPCM will rebalance if no new insight is submitted using: # Resolution Enum: self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Resolution.DAILY)) # timedelta # self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(timedelta(2))) # A lamdda datetime -> datetime. In this case, we can use the pre-defined func at Expiry helper class # self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Expiry.END_OF_WEEK)) self.set_execution(ImmediateExecutionModel()) self.set_risk_management(MaximumDrawdownPercentPerSecurity(0.01)) self.debug("numpy test >>> print numpy.pi: " + str(np.pi)) def on_order_event(self, order_event): if order_event.status == OrderStatus.FILLED: self.debug("Purchased Stock: {0}".format(order_event.symbol))