Overall Statistics |
Total Orders 1855 Average Win 0.21% Average Loss -0.14% Compounding Annual Return 13.870% Drawdown 11.900% Expectancy 0.399 Start Equity 1000000 End Equity 2029216.60 Net Profit 102.922% Sharpe Ratio 0.696 Sortino Ratio 0.978 Probabilistic Sharpe Ratio 36.057% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.46 Alpha 0.056 Beta 0.195 Annual Standard Deviation 0.109 Annual Variance 0.012 Information Ratio -0.171 Tracking Error 0.171 Treynor Ratio 0.39 Total Fees $5407.52 Estimated Strategy Capacity $5300000.00 Lowest Capacity Asset XLU RGRPZX100F39 Portfolio Turnover 2.71% |
#region imports from AlgorithmImports import * from arch.unitroot.cointegration import engle_granger from pykalman import KalmanFilter #endregion class PCADemo(QCAlgorithm): def initialize(self): #1. Required: Five years of backtest history self.set_start_date(2019, 1, 1) #2. Required: Alpha Streams Models: self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE) #3. Required: Significant AUM Capacity self.set_cash(1000000) #4. Required: Benchmark to SPY self.set_benchmark("SPY") self.assets = ["XLK", "XLU"] # Add Equity ------------------------------------------------ for i in range(len(self.assets)): self.add_equity(self.assets[i], Resolution.MINUTE).symbol # Instantiate our model self.recalibrate() # Set a variable to indicate the trading bias of the portfolio self.state = 0 # Set Scheduled Event Method For Kalman Filter updating. self.schedule.on(self.date_rules.week_start(), self.time_rules.at(0, 0), self.recalibrate) # Set Scheduled Event Method For Kalman Filter updating. self.schedule.on(self.date_rules.every_day(), self.time_rules.before_market_close("XLK"), self.every_day_before_market_close) def recalibrate(self): qb = self history = qb.history(self.assets, 252*2, Resolution.DAILY) if history.empty: return # Select the close column and then call the unstack method data = history['close'].unstack(level=0) # Convert into log-price series to eliminate compounding effect log_price = np.log(data) ### Get Cointegration Vectors # Get the cointegration vector coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0) coint_vector = coint_result.cointegrating_vector[:2] # Get the spread spread = log_price @ coint_vector ### Kalman Filter # Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and observation matrix is [1]. self.kalman_filter = KalmanFilter(transition_matrices = [1], observation_matrices = [1], initial_state_mean = spread.iloc[:20].mean(), observation_covariance = spread.iloc[:20].var(), em_vars=['transition_covariance', 'initial_state_covariance']) self.kalman_filter = self.kalman_filter.em(spread.iloc[:20], n_iter=5) (filtered_state_means, filtered_state_covariances) = self.kalman_filter.filter(spread.iloc[:20]) # Obtain the current Mean and Covariance Matrix expectations. self.current_mean = filtered_state_means[-1, :] self.current_cov = filtered_state_covariances[-1, :] # Initialize a mean series for spread normalization using the Kalman Filter's results. mean_series = np.array([None]*(spread.shape[0]-20)) # Roll over the Kalman Filter to obtain the mean series. for i in range(20, spread.shape[0]): (self.current_mean, self.current_cov) = self.kalman_filter.filter_update(filtered_state_mean = self.current_mean, filtered_state_covariance = self.current_cov, observation = spread.iloc[i]) mean_series[i-20] = float(self.current_mean) # Obtain the normalized spread series. normalized_spread = (spread.iloc[20:] - mean_series) ### Determine Trading Threshold # Initialize 50 set levels for testing. set_levels = self.get_parameter("set_levels", 50) s0 = np.linspace(0, max(normalized_spread), set_levels) # Calculate the profit levels using the 50 set levels. f_bar = np.array([None]*set_levels) for i in range(set_levels): f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) / normalized_spread.shape[0] # Set trading frequency matrix. D = np.zeros((set_levels-1, set_levels)) for i in range(D.shape[0]): D[i, i] = 1 D[i, i+1] = -1 # Set level of lambda. l = 1.0 # Obtain the normalized profit level. f_star = np.linalg.inv(np.eye(set_levels) + l * D.T@D) @ f_bar.reshape(-1, 1) s_star = [f_star[i]*s0[i] for i in range(set_levels)] self.threshold = s0[s_star.index(max(s_star))] # Set the trading weight. We would like the portfolio absolute total weight is 1 when trading. self.trading_weight = coint_vector / np.sum(abs(coint_vector)) def every_day_before_market_close(self): qb = self # Get the real-time log close price for all assets and store in a Series series = pd.Series() for symbol in qb.securities.Keys: series[symbol] = np.log(qb.securities[symbol].close) # Get the spread spread = np.sum(series * self.trading_weight) # Update the Kalman Filter with the Series (self.current_mean, self.current_cov) = self.kalman_filter.filter_update(filtered_state_mean = self.current_mean, filtered_state_covariance = self.current_cov, observation = spread) # Obtain the normalized spread. normalized_spread = spread - self.current_mean # ============================== # Mean-reversion if normalized_spread < -self.threshold: orders = [] for i in range(len(self.assets)): orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i])) self.set_holdings(orders) self.state = 1 elif normalized_spread > self.threshold: orders = [] for i in range(len(self.assets)): orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i])) self.set_holdings(orders) self.state = -1 # Out of position if spread recovered elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and normalized_spread < self.threshold: self.liquidate() self.state = 0