Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.047 Tracking Error 0.116 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
### https://github.com/QuantConnect/Lean/blob/master/Algorithm.Framework/Selection/QC500UniverseSelectionModel.py # QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from itertools import groupby from math import ceil class QC2000UniverseSelectionModel(FundamentalUniverseSelectionModel): '''Defines the QC500 universe as a universe selection model for framework algorithm For details: https://github.com/QuantConnect/Lean/pull/1663''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None, numberCoarse=3000, numberFine=2000, by_week_or_month='month'): '''Initializes a new default instance of the QC500UniverseSelectionModel''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = numberCoarse self.numberOfSymbolsFine = numberFine self.dollarVolumeBySymbol = {} self.lastMonth = -1 self.lastWeek=-1 self.by_week_or_month=by_week_or_month def SelectCoarse(self, algorithm, coarse): '''Performs coarse selection for the QC500 constituents. The stocks must have fundamental data The stock must have positive previous-day close price The stock must have positive volume on the previous trading day''' if self.by_week_or_month=='week': if algorithm.Time.isocalendar()[1] == self.lastWeek: return Universe.Unchanged elif self.by_week_or_month=='month': if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged # return the symbol objects our sorted collection return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): '''Performs fine selection for the QC500 constituents The company's headquarter must in the U.S. The stock must be traded on either the NYSE or NASDAQ At least half a year since its initial public offering The stock's market cap must be greater than 100 million''' algorithm.Debug('doing fine universe selection') if self.by_week_or_month=='week': self.lastWekk=algorithm.Time.isocalender()[1] elif self.by_week_or_month=='month': self.lastMonth = algorithm.Time.month sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] and (algorithm.Time - x.SecurityReference.IPODate).days > 120 and x.MarketCap > 1e8], key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) final=[x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]] algorithm.Debug('length of universe is {}'.format(len(final))) algorithm.Debug('top one is {}'.format(final[0])) return final # Your New Python File
import statistics from My_Universe_Selection import QC2000UniverseSelectionModel class FocusedRedOrangeDragonfly(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 4, 1) # Set Start Date #self.SetEndDate(2021,4,1) self.SetCash(100000) # Set Strategy Cash self.SetExecution(ImmediateExecutionModel()) self.UniverseSettings.Resolution=Resolution.Daily self.count = 0 self.AddUniverseSelection( QC2000UniverseSelectionModel()) #missing symbols in OnData for monday def OnData(self, data): self.Log(f"{self.Time}; Dividends: {data.Dividends.Count}; Splits: {data.Splits.Count}; Bars; {data.Bars.Count}")