Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 45.034 Tracking Error 0.019 Treynor Ratio 0 Total Fees $0.00 |
from functools import partial class CalibratedNadionReplicator(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 12, 1) # Set Start Date self.SetEndDate(2019, 12, 3) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute, Market.USA) symbols = [ Symbol.Create("SPY", SecurityType.Equity, Market.USA) ] self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.UniverseSettings.Resolution = Resolution.Minute self.AddAlpha(MyAlphaModel(self)) class MyAlphaModel(AlphaModel): def __init__(self, algorithm): algorithm.Schedule.On(algorithm.DateRules.EveryDay("SPY"), \ algorithm.TimeRules.BeforeMarketClose("SPY", 10), \ self.flag_close) self.algo = algorithm self.closing_soon = False def flag_close(self): self.closing_soon = True def Update(self, algorithm, data): insights = [] if self.closing_soon: self.closing_soon = False self.algo.Log("10 minutes before close!") return insights def OnSecuritiesChanged(self, algorithm, changes): pass