Overall Statistics |
Total Trades 6 Average Win 4.91% Average Loss -2.33% Compounding Annual Return 13.080% Drawdown 10.300% Expectancy 0.553 Net Profit 13.080% Sharpe Ratio 0.769 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 2.11 Alpha 0.037 Beta 0.905 Annual Standard Deviation 0.144 Annual Variance 0.021 Information Ratio 0.296 Tracking Error 0.097 Treynor Ratio 0.123 Total Fees $8.62 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # import numpy as np class BasicTemplateAlgorithm(QCAlgorithm): def Initialize(self): self.SetCash(100000) self.SetStartDate(2016,1,1) self.SetEndDate(2017,1,1) self.AddSecurity(SecurityType.Equity, "IBM", Resolution.Daily) self.AddSecurity(SecurityType.Equity, "GOOG", Resolution.Daily) self._count = 0 def OnData(self, slice): if not self.Portfolio.Invested: self.SetHoldings(self.Securities["IBM"].Symbol, 0.5) self.SetHoldings(self.Securities["GOOG"].Symbol, 0.5) self._count += 1 self.Log(str(self._count)) if self._count == 100: self.SetHoldings(self.Securities["IBM"].Symbol, 0) if self._count == 130: self.SetHoldings(self.Securities["GOOG"].Symbol, 0)