Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.146 Tracking Error 0.141 Treynor Ratio 0 Total Fees $0.00 |
class DynamicCalibratedChamber(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 1, 1) # Set Start Date self.SetEndDate(2015, 12, 31) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.__numberOfSymbols = 50 self.__numberOfSymbolsFine = 10 self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None)) # FinancialStatements.IncomeStatement.TotalRevenue.OneMonth def OnData(self, data): pass def CoarseSelectionFunction(self, coarse): self.Debug("---------- {} -----------<br>".format(self.Time.date())) sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] def FineSelectionFunction(self, fine): sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True) result = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] for i in sortedByPeRatio: self.Debug("Revenue of {} is {} <br>".format(i.Symbol, i.ValuationRatios.PERatio)) return result