Overall Statistics |
Total Trades 15 Average Win 2949.00% Average Loss -3.29% Compounding Annual Return 117.685% Drawdown 83.800% Expectancy 255.427 Net Profit 5471.716% Sharpe Ratio 1.716 Probabilistic Sharpe Ratio 66.199% Loss Rate 71% Win Rate 29% Profit-Loss Ratio 896.49 Alpha 1.141 Beta -0.185 Annual Standard Deviation 0.651 Annual Variance 0.424 Information Ratio 1.463 Tracking Error 0.676 Treynor Ratio -6.027 Total Fees $1331849.66 Estimated Strategy Capacity $5000000.00 Lowest Capacity Asset BTCUSD XJ |
import numpy as np import pandas as pd from sklearn.linear_model import RidgeClassifier from AlgorithmImports import * class MachineLearningAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 5, 2) self.SetEndDate(2021, 6, 30) self.SetCash(1000000) self.AddEquity("SPY", Resolution.Daily) self.SetBenchmark("SPY") self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.AddCrypto("BTCUSD", Resolution.Daily) self.ticker = "BTCUSD" self.AddUniverseSelection(ManualUniverseSelectionModel(self.ticker)) self.lookback = 30 self.SetWarmup(self.lookback) self.Close_rolling = RollingWindow[float](self.lookback) self.Volume_rolling = RollingWindow[float](self.lookback) self.fast_volume_LWMA_indicator = self.LWMA(self.ticker, 5, Resolution.Daily) self.slow_volume_LWMA_indicator = self.LWMA(self.ticker, 20, Resolution.Daily) self.RSI_rolling = RollingWindow[float](self.lookback) self.RSI_indicator = self.RSI(self.ticker, 25, Resolution.Daily) self.Trend_rolling = RollingWindow[float](self.lookback) self.trLWMA_indicator = self.LWMA(self.ticker, 15, Resolution.Daily) self.ROC_indicator = self.ROC(self.ticker, 1, Resolution.Daily) self.AD_rolling = RollingWindow[float](self.lookback) self.AD_indicator = self.AD(self.ticker, Resolution.Daily) self.STO_rolling = RollingWindow[float](self.lookback) self.STO_indicator = self.STO(self.ticker, 14, 14, 3, Resolution.Daily) self.KAMA_rolling = RollingWindow[float](self.lookback) self.KAMA_indicator = self.KAMA(self.ticker, 25, Resolution.Daily) self.AddAlpha(MachineLearningAlphaModel(self.ticker, self.Close_rolling, self.Volume_rolling, self.fast_volume_LWMA_indicator, self.slow_volume_LWMA_indicator, self.RSI_rolling, self.RSI_indicator, self.Trend_rolling, self.trLWMA_indicator, self.ROC_indicator, self.AD_rolling, self.AD_indicator, self.STO_rolling, self.STO_indicator, self.KAMA_rolling, self.KAMA_indicator)) class MachineLearningAlphaModel: def __init__(self, ticker, closew, volumew, fast_volume_lwmai, slow_volume_lwmai, rsiw, rsii, trendw, trlwmai, roci, adw, adi, stow, stoi, kamaw, kamai): self.period = timedelta(30) self.ticker = ticker self.Close_rolling = closew self.Volume_rolling= volumew self.fast_volume_LWMA_indicator = fast_volume_lwmai self.slow_volume_LWMA_indicator = slow_volume_lwmai self.RSI_rolling = rsiw self.RSI_indicator = rsii self.Trend_rolling = trendw self.trLWMA_indicator = trlwmai self.ROC_indicator = roci self.AD_rolling = adw self.AD_indicator = adi self.STO_rolling = stow self.STO_indicator = stoi self.KAMA_rolling = kamaw self.KAMA_indicator = kamai def GetMLModel(self): self.MLModel = 0 self.MLModel = RidgeClassifier(random_state=18) def Update(self, algorithm, data): insights = [] if data.Bars.ContainsKey(self.ticker) and not algorithm.IsWarmingUp and self.RSI_indicator.IsReady \ and self.fast_volume_LWMA_indicator.IsReady and self.fast_volume_LWMA_indicator.IsReady\ and self.trLWMA_indicator.IsReady and self.AD_indicator.IsReady\ and self.STO_indicator.IsReady and self.KAMA_indicator.IsReady: self.Close_rolling.Add(data[self.ticker].Close) self.fast_volume_LWMA_indicator.Update(data.Bars[self.ticker].EndTime, data.Bars[self.ticker].Volume) self.slow_volume_LWMA_indicator.Update(data.Bars[self.ticker].EndTime, data.Bars[self.ticker].Volume) self.Volume_rolling.Add(self.fast_volume_LWMA_indicator.Current.Value / self.slow_volume_LWMA_indicator.Current.Value) self.RSI_rolling.Add(self.RSI_indicator.Current.Value) self.ROC_indicator.Update(data[self.ticker].EndTime, self.trLWMA_indicator.Current.Value) self.Trend_rolling.Add(self.ROC_indicator.Current.Value) self.AD_rolling.Add(self.AD_indicator.Current.Value) self.STO_rolling.Add(self.STO_indicator.Current.Value) self.KAMA_rolling.Add(self.KAMA_indicator.Current.Value) if self.Close_rolling.IsReady and self.Volume_rolling.IsReady and self.RSI_rolling.IsReady \ and self.Trend_rolling.IsReady and self.AD_rolling.IsReady\ and self.STO_rolling.IsReady and self.KAMA_rolling.IsReady: df1 = pd.DataFrame(self.Close_rolling, columns=["Close"]).reset_index(drop=True) df2 = pd.DataFrame(self.Volume_rolling, columns=["Volume"]).reset_index(drop=True) df3 = pd.DataFrame(self.RSI_rolling, columns=["RSI"]).reset_index(drop=True) df4 = pd.DataFrame(self.Trend_rolling, columns=["Trend"]).reset_index(drop=True) df5 = pd.DataFrame(self.AD_rolling, columns=["AD"]).reset_index(drop=True) df6 = pd.DataFrame(self.STO_rolling, columns=["STO"]).reset_index(drop=True) df7 = pd.DataFrame(self.KAMA_rolling, columns=["KAMA"]).reset_index(drop=True) self.df = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=1) # calculate daily forward returns to be used to set Target / Signal self.df['Return'] = np.log(self.df['Close'].shift(-1)/self.df['Close']) self.df = self.df.dropna() # set Signal / Target self.df['Signal'] = 0 self.df.loc[self.df['Return'] > 0, 'Signal'] = 1 self.df.loc[self.df['Return'] < 0, 'Signal'] = -1 # set training data self.X = self.df.drop(['Close', 'Return','Signal'], axis=1) self.Y = self.df['Signal'] # align feature set & signal self.Y, self.X = self.Y.align(self.X, axis=0, join='inner') self.X_train = self.X[:-1] self.Y_train = self.Y[:-1] self.X_train.replace([np.inf, -np.inf], np.nan, inplace=True) self.Y_train.replace([np.inf, -np.inf], np.nan, inplace=True) drops = [] [drops.append(i) for i in range(self.X_train.shape[0]) if self.X_train.iloc[i].isnull().any()] [drops.append(i) for i in range(self.Y_train.shape[0]) if self.Y_train.iloc[i] == np.nan and i not in drops] self.X_train.drop(index=self.X_train.index[drops], inplace=True) self.Y_train.drop(index=self.Y_train.index[drops], inplace=True) if self.X_train.empty or self.Y_train.empty: return [] # fit / train ML model self.GetMLModel() self.MLModel.fit(self.X_train, self.Y_train) # predict next day signal using today's values of feature set self.X_today = self.X.iloc[-1] # self.X_today is Series, so convert to numpy array self.X_today = self.X_today.to_numpy() # reshape self.X_today because it only has 1 day's sample self.X_today = self.X_today.reshape(1,-1) # Y_predict will take predicted signal self.Y_predict = self.Y.iloc[-1] try: self.Y_predict = self.MLModel.predict(self.X_today) except: return [] # set insight based on predicted signal if self.Y_predict == 1: insights.append(Insight(self.ticker, self.period, InsightType.Price, InsightDirection.Up, 1, None)) elif self.Y_predict == -1: insights.append(Insight(self.ticker, self.period, InsightType.Price, InsightDirection.Down, 1, None)) else: insights.append(Insight(self.ticker, self.period, InsightType.Price, InsightDirection.Flat, 1, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): self.changes = changes