Overall Statistics |
Total Trades 4 Average Win 0.37% Average Loss -1.36% Compounding Annual Return -26.842% Drawdown 3.300% Expectancy -0.365 Net Profit -1.687% Sharpe Ratio -2.845 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.27 Alpha -0.209 Beta 0.09 Annual Standard Deviation 0.114 Annual Variance 0.013 Information Ratio 4.401 Tracking Error 0.215 Treynor Ratio -3.591 Total Fees $4.51 |
/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Data.Market; using QuantConnect.Indicators; namespace QuantConnect.Algorithm.Examples { /// <summary> /// Uses daily data and a simple moving average cross to place trades and an ema for stop placement /// </summary> public class DailyAlgorithm : QCAlgorithm { private DateTime lastAction; private MovingAverageConvergenceDivergence macd; private ExponentialMovingAverage ema_tsla; String symbol_TSLA = "TSLA"; String symbol_SPY = "SPY"; /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { SetStartDate(2016, 1, 1); //Set Start Date SetEndDate(2016, 1, 20); //Set End Date SetCash(100000); //Set Strategy Cash // Find more symbols here: http://quantconnect.com/data AddSecurity(SecurityType.Equity, symbol_TSLA, Resolution.Hour); AddSecurity(SecurityType.Equity, symbol_SPY, Resolution.Hour); macd = MACD(symbol_TSLA, 12, 26, 9, MovingAverageType.Exponential, Resolution.Hour, Field.Close); ema_tsla = EMA(symbol_TSLA, 20, Resolution.Hour, Field.Close); Securities[symbol_TSLA].SetLeverage(1.0m); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">TradeBars IDictionary object with your stock data</param> public void OnData(TradeBars data) { TradeBar TSLA = data[symbol_TSLA]; Log(TSLA.Time.ToString() + "--TSLA-- " + TSLA.Close); TradeBar SPY = data[symbol_SPY]; Log(SPY.Time.ToString() + " --SPY-- " + SPY.Close); if (!macd.IsReady) return; Log("MACD" + " " + macd.ToString()); Log("ema_tsla" + " " + ema_tsla.ToString()); if (!data.ContainsKey(symbol_TSLA)) return; if (lastAction.Date == Time.Date) return; lastAction = Time; var holding = Portfolio[symbol_SPY]; Log("MACD" + " " + macd.ToString()); Log("EMA" + " " + ema_tsla.ToString()); if (holding.Quantity <= 0 && macd > macd.Signal && data[symbol_TSLA].Price > ema_tsla) { SetHoldings(symbol_TSLA, 0.25m); } else if (holding.Quantity >= 0 && macd < macd.Signal && data[symbol_TSLA].Price < ema_tsla) { SetHoldings(symbol_TSLA, -0.25m); } } } }