Overall Statistics |
Total Trades 7453 Average Win 0.40% Average Loss -0.37% Compounding Annual Return 27.432% Drawdown 27.500% Expectancy 0.121 Net Profit 354.891% Sharpe Ratio 1.009 Probabilistic Sharpe Ratio 40.106% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 1.08 Alpha 0.22 Beta -0.128 Annual Standard Deviation 0.206 Annual Variance 0.042 Information Ratio 0.401 Tracking Error 0.276 Treynor Ratio -1.624 Total Fees $21199.00 Estimated Strategy Capacity $140000000.00 Lowest Capacity Asset LMT R735QTJ8XC9X Portfolio Turnover 66.00% |
from AlgorithmImports import * import talib from datetime import timedelta from QuantConnect.Data.UniverseSelection import * from QuantConnect.Algorithm.Framework.Alphas import * class TTMAlphaModel(AlphaModel): def __init__(self, period=20, k=2, rsi_period=14, rsi_overbought=70, rsi_oversold=30): self.period = period self.k = k self.rsi_period = rsi_period self.rsi_overbought = rsi_overbought self.rsi_oversold = rsi_oversold self.last_close = {} self.bb = BollingerBands(period, k) self.kch = KeltnerChannels(period, k, MovingAverageType.Simple) self.atr = AverageTrueRange(period, MovingAverageType.Simple) self.prev_squeeze = {} def Update(self, algorithm, data): insights = [] # Get current time current_time = algorithm.Time # Get current universe universe = algorithm.UniverseManager.ActiveSecurities # Get historical data for universe #history = algorithm.History(universe, self.period, Resolution.Daily) #history = [] # Calculate TTM Squeeze and RSI indicators for each security in universe for security in universe: history = algorithm.History(security.Value.Symbol, 30, Resolution.Daily) bar = data.Bars.get(security.Value.Symbol) if bar: self.bb.Update(bar.EndTime, bar.Close) self.kch.Update(bar) self.atr.Update(bar) if not history.empty and self.bb.IsReady and self.kch.IsReady and self.atr.IsReady: #kc_upper = self.kch.UpperBand.Current.Value #kc_lower = self.kch.LowerBand.Current.Value #bb_upper = self.bb.UpperBand.Current.Value #bb_lower = self.bb.LowerBand.Current.Value #atr = self.atr.TrueRange.Current.Value # Get last close price current_close = data[security.Value.Symbol].Close # Calculate Bollinger Bands, Keltner Channels, and True Range bb_upper, _, bb_lower = talib.BBANDS(history['close'], timeperiod=self.period) #kc_upper, _, kc_lower = talib.KC(history['high'], history['low'], history['close'], timeperiod=self.period, mult=self.k) #tr = talib.TRANGE(history['high'], history['low'], history['close']) kama = talib.KAMA(history['close'], timeperiod=self.period) # Calculate ATR atr = talib.ATR(history['high'], history['low'], history['close'], timeperiod=20) mom = talib.MOM(history['close'], timeperiod=20) if len(mom) < 5: continue smoothed_mom = mom.rolling(5).mean() ema_8 = talib.EMA(history['close'], timeperiod=8) ema_21 = talib.EMA(history['close'], timeperiod=21) kc_upper = kama + (1.5 * atr) kc_lower = kama - (1.5 * atr) # Calculate TTM Squeeze #if atr[-1] < kc_upper[-1] - kc_lower[-1] and bb_upper[-1] - bb_lower[-1]> kc_upper[-1] - kc_lower[-1]: if bb_upper[-1] < kc_upper[-1] and bb_lower[-1] > kc_lower[-1]: squeeze = True else: squeeze = False if bb_upper[-2] < kc_upper[-2] and bb_lower[-2] > kc_lower[-2]: prev_squeeze = True else: prev_squeeze = False # Calculate RSI rsi = talib.RSI(history['close'], timeperiod=self.rsi_period) mom_bullish = smoothed_mom[-1] > smoothed_mom[-2] and smoothed_mom[-1] > 0 and smoothed_mom[-2] > 0 #Blue mom_bearish = smoothed_mom[-1] < smoothed_mom[-2] and smoothed_mom[-1] < 0 and smoothed_mom[-2] < 0 #Red mom_bullish_stop = smoothed_mom[-1] < smoothed_mom[-2] #Dark Blue mom_bearish_Stop = smoothed_mom[-1] > smoothed_mom[-2] #Yellow if mom_bullish: if squeeze and prev_squeeze: insights.append(Insight.Price(security.Value.Symbol, timedelta(30), InsightDirection.Up)) elif mom_bearish: if squeeze and prev_squeeze: insights.append(Insight.Price(security.Value.Symbol, timedelta(30), InsightDirection.Down)) if algorithm.Portfolio[security.Value.Symbol].Invested: if algorithm.Portfolio[security.Value.Symbol].IsLong and mom_bullish_stop: insights.append(Insight.Price(security.Value.Symbol, timedelta(1), InsightDirection.Flat)) #algorithm.Liquidate(security.Value.Symbol.Value, "Liquidated exit short") elif algorithm.Portfolio[security.Value.Symbol].IsShort and mom_bearish_Stop: insights.append(Insight.Price(security.Value.Symbol, timedelta(1), InsightDirection.Flat)) #algorithm.Liquidate(security.Value.Symbol.Value, "Liquidated exit short") ''' # Check for squeeze if current_close > bb_upper[-1] and current_close > kc_upper[-1]: if squeeze and ema_8[-1] < ema_21[-1]: insights.append(Insight.Price(security.Value.Symbol, timedelta(14), InsightDirection.Down)) elif current_close < bb_lower[-1] and current_close < kc_lower[-1]: if squeeze and ema_8[-1] > ema_21[-1]: insights.append(Insight.Price(security.Value.Symbol, timedelta(14), InsightDirection.Up)) else: insights.append(Insight.Price(security.Value.Symbol, timedelta(1), InsightDirection.Flat)) ''' # Check for oversold/overbought RSI ''' if rsi[-1] > self.rsi_overbought: insights.append(Insight.Price(security.Value.Symbol, timedelta(1), InsightDirection.Down)) elif rsi[-1] < self.rsi_oversold: insights.append(Insight.Price(security.Value.Symbol, timedelta(1), InsightDirection.Up)) ''' # Update last_close self.last_close[security] = current_close #self.prev_squeeze[security.Value.Symbol] = squeeze return insights class TTMAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 1, 1) self.SetEndDate(2023, 4, 1) self.SetCash(100000) # Universe selection self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction) # Alpha model self.SetAlpha(TTMAlphaModel()) # Portfolio construction and risk management self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.1)) self.Settings.RebalancePortfolioOnInsightChanges = True self.Settings.RebalancePortfolioOnSecurityChanges = False #self.UniverseSettings.ExtendedMarketHours = False # Set benchmark #self.SetBenchmark("SPY") def CoarseSelectionFunction(self, coarse): """ Perform coarse filters on universe. Called once per day. Returns all stocks meeting the desired criteria. Attributes available: .AdjustedPrice .DollarVolume .HasFundamentalData .Price -> always the raw price! .Volume """ # Get the highest volume stocks stocks = [x for x in coarse if x.HasFundamentalData] sorted_by_dollar_volume = sorted( stocks, key=lambda x: x.DollarVolume, reverse=True ) top = 50 symbols = [x.Symbol for x in sorted_by_dollar_volume[:top]] # Print universe details when live mode if self.LiveMode: self.MyLog(f"Coarse filter returned {len(symbols)} stocks.") return symbols